holoviews package#
Subpackages#
- holoviews.core package
- Subpackages
- Submodules
- holoviews.core.accessors module
- holoviews.core.boundingregion module
- holoviews.core.decollate module
- holoviews.core.dimension module
- holoviews.core.element module
- holoviews.core.io module
- holoviews.core.layout module
- holoviews.core.ndmapping module
- holoviews.core.operation module
- holoviews.core.options module
- holoviews.core.overlay module
- holoviews.core.pprint module
- holoviews.core.sheetcoords module
- holoviews.core.spaces module
- holoviews.core.traversal module
- holoviews.core.tree module
- Module contents
AdjointLayout
AttrTree
BoundingBox
BoundingEllipse
Collator
CompositeOverlay
Dataset
Dataset.add_dimension()
Dataset.aggregate()
Dataset.clone()
Dataset.closest()
Dataset.columns()
Dataset.compute()
Dataset.dataset
Dataset.dframe()
Dataset.dimension_values()
Dataset.get_dimension_type()
Dataset.groupby()
Dataset.iloc
Dataset.map()
Dataset.ndloc
Dataset.options()
Dataset.persist()
Dataset.pipeline
Dataset.range()
Dataset.reduce()
Dataset.reindex()
Dataset.relabel()
Dataset.sample()
Dataset.select()
Dataset.shape
Dataset.sort()
Dataset.to
Dataset.transform()
Dimension
Dimensioned
DynamicMap
DynamicMap.add_dimension()
DynamicMap.clone()
DynamicMap.collate()
DynamicMap.current_key
DynamicMap.decollate()
DynamicMap.drop_dimension()
DynamicMap.event()
DynamicMap.grid()
DynamicMap.groupby()
DynamicMap.hist()
DynamicMap.layout()
DynamicMap.map()
DynamicMap.options()
DynamicMap.overlay()
DynamicMap.reindex()
DynamicMap.relabel()
DynamicMap.reset()
DynamicMap.select()
DynamicMap.unbounded
Element
Element2D
Element3D
Empty
GridMatrix
GridSpace
HoloMap
Layout
MultiDimensionalMapping
MultiDimensionalMapping.add_dimension()
MultiDimensionalMapping.clone()
MultiDimensionalMapping.dimension_values()
MultiDimensionalMapping.drop_dimension()
MultiDimensionalMapping.get()
MultiDimensionalMapping.groupby()
MultiDimensionalMapping.info
MultiDimensionalMapping.items()
MultiDimensionalMapping.keys()
MultiDimensionalMapping.last
MultiDimensionalMapping.last_key
MultiDimensionalMapping.pop()
MultiDimensionalMapping.reindex()
MultiDimensionalMapping.update()
MultiDimensionalMapping.values()
NdLayout
NdMapping
NdOverlay
Operation
Overlay
SheetCoordinateSystem
SheetCoordinateSystem.closest_cell_center()
SheetCoordinateSystem.matrix2sheet()
SheetCoordinateSystem.matrixidx2sheet()
SheetCoordinateSystem.sheet2matrix()
SheetCoordinateSystem.sheet2matrixidx()
SheetCoordinateSystem.sheetcoordinates_of_matrixidx()
SheetCoordinateSystem.xdensity
SheetCoordinateSystem.ydensity
Tabular
UniformNdMapping
ViewableElement
ViewableTree
- holoviews.element package
- Submodules
- holoviews.element.annotation module
- holoviews.element.chart module
- holoviews.element.chart3d module
- holoviews.element.comparison module
- holoviews.element.geom module
- holoviews.element.graphs module
- holoviews.element.path module
- holoviews.element.raster module
- holoviews.element.sankey module
- holoviews.element.selection module
- holoviews.element.stats module
- holoviews.element.tabular module
- holoviews.element.tiles module
- holoviews.element.util module
- Module contents
Annotation
Area
Arrow
Bars
Bivariate
Bounds
Box
BoxWhisker
Chord
Contours
Curve
Dataset
Dataset.add_dimension()
Dataset.aggregate()
Dataset.clone()
Dataset.closest()
Dataset.columns()
Dataset.compute()
Dataset.dataset
Dataset.dframe()
Dataset.dimension_values()
Dataset.get_dimension_type()
Dataset.groupby()
Dataset.iloc
Dataset.map()
Dataset.ndloc
Dataset.options()
Dataset.persist()
Dataset.pipeline
Dataset.range()
Dataset.reduce()
Dataset.reindex()
Dataset.relabel()
Dataset.sample()
Dataset.select()
Dataset.shape
Dataset.sort()
Dataset.to
Dataset.transform()
Dendrogram
Distribution
Div
EdgePaths
Element
Ellipse
ErrorBars
Graph
HLine
HLines
HSV
HSpan
HSpans
HeatMap
HexTiles
Histogram
Image
ImageStack
ItemTable
Labels
Nodes
Path
Path3D
Points
Polygons
QuadMesh
RGB
Raster
Rectangles
Sankey
Scatter
Scatter3D
Segments
Slope
Spikes
Spline
Spread
Surface
Table
Text
Tiles
TriMesh
TriSurface
VLine
VLines
VSpan
VSpans
VectorField
VectorizedAnnotation
Violin
- Submodules
- holoviews.ipython package
- holoviews.operation package
- Submodules
- holoviews.operation.datashader module
AggState
AggregationOperation
LineAggregationOperation
SpreadingOperation
aggregate
area_aggregate
contours_rasterize
curve_aggregate
datashade
dynspread
geom_aggregate
geometry_rasterize
inspect
inspect_base
inspect_mask
inspect_points
inspect_polygons
overlay_aggregate
quadmesh_rasterize
rasterize
rectangle_aggregate
regrid
segments_aggregate
shade
spikes_aggregate
split_dataframe()
spread
spread_aggregate
stack
trimesh_rasterize
- holoviews.operation.downsample module
- holoviews.operation.element module
- holoviews.operation.normalization module
- holoviews.operation.resample module
- holoviews.operation.stats module
- holoviews.operation.timeseries module
- holoviews.operation.datashader module
- Module contents
- Submodules
- holoviews.plotting package
- Subpackages
- Submodules
- holoviews.plotting.links module
- holoviews.plotting.mixins module
- holoviews.plotting.plot module
- holoviews.plotting.renderer module
- holoviews.plotting.util module
CMapInfo
Warning
apply_nodata
attach_streams()
categorical_legend
color_intervals()
compute_overlayable_zorders()
compute_sizes()
dim_axis_label()
dim_range_key()
displayable()
dynamic_update()
flatten_stack
get_axis_padding()
get_directed_graph_paths()
get_dynamic_mode()
get_min_distance()
get_minimum_span()
get_nested_plot_frame()
get_plot_frame()
get_range()
get_sideplot_ranges()
hex2rgb()
initialize_dynamic()
initialize_unbounded()
is_dynamic_overlay()
isoverlay_fn()
linear_gradient()
list_cmaps()
map_colors()
mplcmap_to_palette()
overlay_depth()
polylinear_gradient()
process_cmap()
register_cmaps()
resample_palette()
rgb2hex()
scale_fontsize()
split_dmap_overlay()
traverse_setter()
undisplayable_info()
within_range()
- Module contents
Cycle
Plot
Renderer
Renderer.app()
Renderer.comm_manager
Renderer.components()
Renderer.export_widgets()
Renderer.get_plot()
Renderer.get_plot_state()
Renderer.get_size()
Renderer.html()
Renderer.load_nb()
Renderer.plot_options()
Renderer.plotting_class()
Renderer.save()
Renderer.server_doc()
Renderer.state()
Renderer.static_html()
Renderer.validate()
- holoviews.util package
Submodules#
- holoviews.annotators module
- holoviews.pyodide module
- holoviews.selection module
- holoviews.streams module
BoundsX
BoundsXY
BoundsY
BoxEdit
Buffer
CDSStream
Counter
CrossFilterSet
CurveEdit
Derived
DoubleTap
Draw
FreehandDraw
History
Lasso
LinkedStream
MouseEnter
MouseLeave
MultiAxisTap
PanEnd
ParamMethod
ParamRefs
Params
Pipe
PlotReset
PlotSize
PointDraw
PointerX
PointerXY
PointerY
PolyDraw
PolyEdit
PressUp
RangeX
RangeXY
RangeY
SelectMode
Selection1D
SelectionExpr
SelectionExprSequence
SelectionXY
SingleTap
Stream
Tap
streams_list_from_dict()
triggering_streams()
Module contents#
HoloViews makes data analysis and visualization simple#
HoloViews lets you focus on what you are trying to explore and convey, not on the process of plotting.
HoloViews
supports a wide range of data sources including Pandas, Dask, XArray Rapids cuDF, Streamz, Intake, Geopandas, NetworkX and Ibis.
supports the plotting backends Bokeh (default), Matplotlib and Plotly.
allows you to drop into the rest of the HoloViz ecosystem when more power or flexibility is needed.
For basic data exploration we recommend using the higher level hvPlot package, which provides the familiar Pandas .plot api. You can drop into HoloViews when needed.
To learn more check out https://holoviews.org/. To report issues or contribute go to holoviz/holoviews. To join the community go to https://discourse.holoviz.org/.
How to use HoloViews in 3 simple steps#
Work with the data source you already know and ❤️
>>> import pandas as pd
>>> station_info = pd.read_csv('https://raw.githubusercontent.com/holoviz/holoviews/main/examples/assets/station_info.csv')
Import HoloViews and configure your plotting backend
>>> import holoviews as hv
>>> hv.extension('bokeh')
Annotate your data
>>> scatter = (
... hv.Scatter(station_info, kdims='services', vdims='ridership')
... .redim(
... services=hv.Dimension("services", label='Services'),
... ridership=hv.Dimension("ridership", label='Ridership'),
... )
... .opts(size=10, color="red", responsive=True)
... )
>>> scatter
In a notebook this will display a nice scatter plot.
Note that the kdims (The key dimension(s)) represents the independent variable(s) and the vdims (value dimension(s)) the dependent variable(s).
For more check out https://holoviews.org/getting_started/Introduction.html
How to get help#
You can understand the structure of your objects by printing them.
>>> print(scatter)
:Scatter [services] (ridership)
You can get extensive documentation using hv.help.
>>> hv.help(scatter)
In a notebook or ipython environment the usual
help and ? will provide you with documentation.
TAB and SHIFT+TAB completion will help you navigate.
To ask the community go to https://discourse.holoviz.org/. To report issues go to holoviz/holoviews.
- class holoviews.AdjointLayout(data, **params)[source]#
Bases:
Layoutable
,Dimensioned
An AdjointLayout provides a convenient container to lay out some marginal plots next to a primary plot. This is often useful to display the marginal distributions of a plot next to the primary plot. AdjointLayout accepts a list of up to three elements, which are laid out as follows with the names ‘main’, ‘top’ and ‘right’:
________________ | 3 | | |___________|___| | | | 1: main | | | 2: right | 1 | 2 | 3: top | | | |___________|___|
- Attributes:
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
get
(key[, default])Returns the viewable corresponding to the supplied string or integer based key.
relabel
([label, group, depth])Clone object and apply new group and/or label.
items
keys
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: group, cdims, vdimskdims = List(bounds=(0, None), constant=True, default=[Dimension('AdjointLayout')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- property ddims#
The list of deep dimensions
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- get(key, default=None)[source]#
Returns the viewable corresponding to the supplied string or integer based key.
- Parameters:
- key
Numeric
orstr
index
0: ‘main’
1: ‘right’
2: ‘top’
- default
Value returned if key not found
- key
- Returns:
Indexed
value
orsupplied
default
- property group#
Group inherited from main element
- property label#
Label inherited from main element
- property main#
Returns the main element in the AdjointLayout
- relabel(label=None, group=None, depth=1)[source]#
Clone object and apply new group and/or label.
Applies relabeling to child up to the supplied depth.
- Parameters:
- Returns:
Returns
relabelled
object
- property right#
Returns the right marginal element in the AdjointLayout
- property top#
Returns the top marginal element in the AdjointLayout
- class holoviews.Annotation(data, **params)[source]#
Bases:
Element2D
An Annotation is a special type of element that is designed to be overlaid on top of any arbitrary 2D element. Annotations have neither key nor value dimensions allowing them to be overlaid over any type of data.
Note that one or more Annotations can be displayed without being overlaid on top of any other data. In such instances (by default) they will be displayed using the unit axis limits (0.0-1.0 in both directions) unless an explicit ‘extents’ parameter is supplied. The extents of the bottom Annotation in the Overlay is used when multiple Annotations are displayed together.
Methods
clone
(*args, **overrides)Clones the object, overriding data and parameters.
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='Annotation', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('x'), Dimension('y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- clone(*args, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.Area(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Curve
Area is a Chart element representing the area under a curve or between two curves in a 1D coordinate system. The key dimension represents the location of each coordinate along the x-axis, while the value dimension(s) represent the height of the area or the lower and upper bounds of the area between curves.
Multiple areas may be stacked by overlaying them an passing them to the stack method.
Methods
stack
(areas[, baseline_name])Stacks an (Nd)Overlay of Area or Curve Elements by offsetting their baselines.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypeholoviews.element.chart.Chart
: kdims, vdimsgroup = String(constant=True, default='Area', label='Group')
A string describing the data wrapped by the object.
- class holoviews.Arrow(x, y, text='', direction='<', points=40, arrowstyle='->', **params)[source]#
Bases:
Annotation
Draw an arrow to the given xy position with optional text at distance ‘points’ away.
The direction of the arrow may be specified as well as the arrow head style.
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='Arrow', label='Group')
A string describing the data wrapped by the object.
x = ClassSelector(class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='X')
The x-position of the arrow which make be numeric or a timestamp.
y = ClassSelector(class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='Y')
The y-position of the arrow which make be numeric or a timestamp.
text = String(default='', label='Text')
Text associated with the arrow.
direction = Selector(default='<', label='Direction', names={}, objects=['<', '^', '>', 'v'])
The cardinal direction in which the arrow is pointing. Accepted arrow directions are
'<'
, ‘^’,'>'
and ‘v’.arrowstyle = Selector(default='->', label='Arrowstyle', names={}, objects=['-', '->', '-[', '-|>', '<->', '<|-|>'])
The arrowstyle used to draw the arrow. Accepted arrow styles are ‘-’,
'->'
, ‘-[’,'-|>'
,'<->'
and'<|-|>'
points = Number(default=40, inclusive_bounds=(True, True), label='Points')
Font size of arrow text (if any).
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.Bars(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Chart
Bars is a Chart element representing categorical observations using the height of rectangular bars. The key dimensions represent the categorical groupings of the data, but may also be used to stack the bars, while the first value dimension represents the height of each bar.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Bars', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(1, 3), default=[Dimension('x')], label='Kdims')
The key dimension(s) of a Chart represent the independent variable(s).
- class holoviews.Bivariate(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,StatisticsElement
Bivariate elements are containers for two dimensional data, which is to be visualized as a kernel density estimate. The data should be supplied in a tabular format of x- and y-columns.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Bivariate', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('x'), Dimension('y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
vdims = List(bounds=(0, 1), default=[Dimension('Density')], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- class holoviews.BoundingBox(**args)[source]#
Bases:
BoundingRegion
A rectangular bounding box defined either by two points forming an axis-aligned rectangle (or simply a radius for a square).
- contains(x, y)[source]#
Returns true if the given point is contained within the bounding box, where all boundaries of the box are considered to be inclusive.
- contains_exclusive(x, y)[source]#
Return True if the given point is contained within the bounding box, where the bottom and right boundaries are considered exclusive.
- containsbb_exclusive(x)[source]#
Returns true if the given BoundingBox x is contained within the bounding box, where at least one of the boundaries of the box has to be exclusive.
- class holoviews.Bounds(*args, **kwargs)[source]#
Bases:
BaseShape
An arbitrary axis-aligned bounding rectangle defined by the (left, bottom, right, top) coordinate positions.
If supplied a single real number as input, this value will be treated as the radius of a square, zero-center box which will be used to compute the corresponding lbrt tuple.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdims, vdimsholoviews.element.path.Path
: datatypegroup = String(constant=True, default='Bounds', label='Group')
The assigned group name.
lbrt = Tuple(default=(-0.5, -0.5, 0.5, 0.5), label='Lbrt', length=4)
The (left, bottom, right, top) coordinates of the bounding box.
- class holoviews.Box(*args, **kwargs)[source]#
Bases:
BaseShape
Draw a centered box of a given width at the given position with the specified aspect ratio (if any).
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdims, vdimsholoviews.element.path.Path
: datatypegroup = String(constant=True, default='Box', label='Group')
The assigned group name.
x = Number(default=0, inclusive_bounds=(True, True), label='X')
The x-position of the box center.
y = Number(default=0, inclusive_bounds=(True, True), label='Y')
The y-position of the box center.
width = Number(default=1, inclusive_bounds=(True, True), label='Width')
The width of the box.
height = Number(default=1, inclusive_bounds=(True, True), label='Height')
The height of the box.
orientation = Number(default=0, inclusive_bounds=(True, True), label='Orientation')
Orientation in the Cartesian coordinate system, the counterclockwise angle in radians between the first axis and the horizontal.
aspect = Number(default=1.0, inclusive_bounds=(True, True), label='Aspect')
Optional multiplier applied to the box size to compute the width in cases where only the length value is set.
- class holoviews.BoxWhisker(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Dataset
,Element2D
BoxWhisker represent data as a distributions highlighting the median, mean and various percentiles. It may have a single value dimension and any number of key dimensions declaring the grouping of each violin.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='BoxWhisker', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(0, None), default=[], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
vdims = List(bounds=(1, 1), default=[Dimension('y')], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- class holoviews.Callable(callable, **params)[source]#
Bases:
Parameterized
Callable allows wrapping callbacks on one or more DynamicMaps allowing their inputs (and in future outputs) to be defined. This makes it possible to wrap DynamicMaps with streams and makes it possible to traverse the graph of operations applied to a DynamicMap.
Additionally, if the memoize attribute is True, a Callable will memoize the last returned value based on the arguments to the function and the state of all streams on its inputs, to avoid calling the function unnecessarily. Note that because memoization includes the streams found on the inputs it may be disabled if the stream requires it and is triggering.
A Callable may also specify a stream_mapping which specifies the objects that are associated with interactive (i.e. linked) streams when composite objects such as Layouts are returned from the callback. This is required for building interactive, linked visualizations (for the backends that support them) when returning Layouts, NdLayouts or GridSpace objects. When chaining multiple DynamicMaps into a pipeline, the link_inputs parameter declares whether the visualization generated using this Callable will inherit the linked streams. This parameter is used as a hint by the applicable backend.
The mapping should map from an appropriate key to a list of streams associated with the selected object. The appropriate key may be a type[.group][.label] specification for Layouts, an integer index or a suitable NdLayout/GridSpace key. For more information see the DynamicMap tutorial at holoviews.org.
- Attributes:
- argspec
noargs
Returns True if the callable takes no arguments
Methods
clone
([callable])Clones the Callable optionally with new settings
Parameter Definitions
callable = Callable(allow_None=True, constant=True, label='Callable')
The callable function being wrapped.
inputs = List(bounds=(0, None), constant=True, default=[], label='Inputs')
The list of inputs the callable function is wrapping. Used to allow deep access to streams in chained Callables.
operation_kwargs = Dict(class_=<class 'dict'>, constant=True, default={}, label='Operation kwargs')
Potential dynamic keyword arguments associated with the operation.
link_inputs = Boolean(default=True, label='Link inputs')
If the Callable wraps around other DynamicMaps in its inputs, determines whether linked streams attached to the inputs are transferred to the objects returned by the Callable. For example the Callable wraps a DynamicMap with an RangeXY stream, this switch determines whether the corresponding visualization should update this stream with range changes originating from the newly generated axes.
memoize = Boolean(default=True, label='Memoize')
Whether the return value of the callable should be memoized based on the call arguments and any streams attached to the inputs.
operation = Callable(allow_None=True, label='Operation')
The function being applied by the Callable. May be used to record the transform(s) being applied inside the callback function.
stream_mapping = Dict(class_=<class 'dict'>, constant=True, default={}, label='Stream mapping')
Defines how streams should be mapped to objects returned by the Callable, e.g. when it returns a Layout.
- property noargs#
Returns True if the callable takes no arguments
- class holoviews.Chord(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Graph
Chord is a special type of Graph which computes the locations of each node on a circle and the chords connecting them. The amount of radial angle devoted to each node and the number of chords are scaled by a weight supplied as a value dimension.
If the values are integers then the number of chords is directly scaled by the value, if the values are floats then the number of chords are apportioned such that the lowest value edge is given one chord and all other nodes are given nodes proportional to their weight.
- Attributes:
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Chord', label='Group')
A string describing the data wrapped by the object.
- property edgepaths#
Returns the fixed EdgePaths or computes direct connections between supplied nodes.
- property nodes#
Computes the node positions the first time they are requested if no explicit node information was supplied.
- class holoviews.Collator(data=None, **params)[source]#
Bases:
NdMapping
Collator is an NdMapping type which can merge any number of HoloViews components with whatever level of nesting by inserting the Collators key dimensions on the HoloMaps. If the items in the Collator do not contain HoloMaps they will be created. Collator also supports filtering of Tree structures and dropping of constant dimensions.
- Attributes:
static_dimensions
Return all constant dimensions.
Parameter Definitions
Parameters inherited from:
group = String(default='Collator', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(0, 0), default=[], label='Vdims')
Collator operates on HoloViews objects, if vdims are specified a value_transform function must also be supplied.
drop = List(bounds=(0, None), default=[], label='Drop')
List of dimensions to drop when collating data, specified as strings.
drop_constant = Boolean(default=False, label='Drop constant')
Whether to demote any non-varying key dimensions to constant dimensions.
filters = List(bounds=(0, None), default=[], label='Filters')
List of paths to drop when collating data, specified as strings or tuples.
progress_bar = Parameter(allow_None=True, label='Progress bar')
The progress bar instance used to report progress. Set to None to disable progress bars.
merge_type = ClassSelector(class_=<class 'holoviews.core.ndmapping.NdMapping'>, default=<class 'holoviews.core.spaces.HoloMap'>, label='Merge type')
value_transform = Callable(allow_None=True, label='Value transform')
If supplied the function will be applied on each Collator value during collation. This may be used to apply an operation to the data or load references from disk before they are collated into a displayable HoloViews object.
- property static_dimensions#
Return all constant dimensions.
- class holoviews.Contours(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Path
The Contours element is a subtype of a Path which is characterized by the fact that each path geometry may only be associated with scalar values. It supports all the same data formats as a Path but does not allow continuously varying values along the path geometry’s coordinates. Conceptually Contours therefore represent iso-contours or isoclines, i.e. a function of two variables which describes a curve along which the function has a constant value.
The canonical representation is a list of dictionaries storing the x- and y-coordinates along with any other (scalar) values:
[{‘x’: 1d-array, ‘y’: 1d-array, ‘value’: scalar}, …]
Alternatively Contours also supports a single columnar data-structure to specify an individual contour:
{‘x’: 1d-array, ‘y’: 1d-array, ‘value’: scalar, ‘continuous’: 1d-array}
Since not all formats allow storing scalar values as actual scalars arrays which are the same length as the coordinates but have only one unique value are also considered scalar. This is strictly enforced, ensuring that each path geometry represents a valid iso-contour.
The easiest way of accessing the individual geometries is using the Contours.split method, which returns each path geometry as a separate entity, while the other methods assume a flattened representation where all paths are separated by NaN values.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdimsholoviews.element.path.Path
: datatypegroup = String(constant=True, default='Contours', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(0, None), constant=True, default=[], label='Vdims')
Contours optionally accept a value dimension, corresponding to the supplied values.
- class holoviews.Curve(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Chart
Curve is a Chart element representing a line in a 1D coordinate system where the key dimension maps on the line x-coordinate and the first value dimension represents the height of the line along the y-axis.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypeholoviews.element.chart.Chart
: kdims, vdimsgroup = String(constant=True, default='Curve', label='Group')
A string describing the data wrapped by the object.
- class holoviews.Cycle(cycle=None, **params)[source]#
Bases:
Parameterized
A simple container class that specifies cyclic options. A typical example would be to cycle the curve colors in an Overlay composed of an arbitrary number of curves. The values may be supplied as an explicit list or a key to look up in the default cycles attribute.
Parameter Definitions
key = String(allow_None=True, default='default_colors', label='Key')
The key in the default_cycles dictionary used to specify the color cycle if values is not supplied.
values = List(bounds=(0, None), default=[], label='Values')
The values the cycle will iterate over.
- class holoviews.Dataset(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Element
Dataset provides a general baseclass for Element types that contain structured data and supports a range of data formats.
The Dataset class supports various methods offering a consistent way of working with the stored data regardless of the storage format used. These operations include indexing, selection and various ways of aggregating or collapsing the data with a supplied function.
- Attributes:
dataset
The Dataset that this object was created from
iloc
Returns iloc indexer with support for columnar indexing.
ndloc
Returns ndloc indexer with support for gridded indexing.
pipeline
Chain operation that evaluates the sequence of operations that was
- redim
shape
Returns the shape of the data.
to
Returns the conversion interface with methods to convert Dataset
Methods
add_dimension
(dimension, dim_pos, dim_val[, ...])Adds a dimension and its values to the Dataset
aggregate
([dimensions, function, spreadfn])Aggregates data on the supplied dimensions.
clone
([data, shared_data, new_type, link])Clones the object, overriding data and parameters.
closest
([coords])Snaps coordinate(s) to closest coordinate in Dataset
columns
([dimensions])Convert dimension values to a dictionary.
compute
()Computes the data to a data format that stores the daata in memory, e.g. a Dask dataframe or array is converted to a Pandas DataFrame or NumPy array.
dframe
([dimensions, multi_index])Convert dimension values to DataFrame.
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
get_dimension_type
(dim)Get the type of the requested dimension.
groupby
([dimensions, container_type, ...])Groups object by one or more dimensions
map
(map_fn[, specs, clone])Map a function to all objects matching the specs
options
(*args[, clone])Applies simplified option definition returning a new object.
persist
()Persists the results of a lazy data interface to memory to speed up data manipulation and visualization.
range
(dim[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
reduce
([dimensions, function, spreadfn])Applies reduction along the specified dimension(s).
reindex
([kdims, vdims])Reindexes Dataset dropping static or supplied kdims
relabel
([label, group, depth])Clone object and apply new group and/or label.
sample
([samples, bounds, closest])Samples values at supplied coordinates.
select
([selection_expr, selection_specs])Applies selection by dimension name
sort
([by, reverse])Sorts the data by the values along the supplied dimensions.
transform
(*args, **kwargs)Transforms the Dataset according to a dimension transform.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='Dataset', label='Group')
A string describing the data wrapped by the object.
datatype = List(bounds=(0, None), default=['dataframe', 'dictionary', 'grid', 'xarray', 'multitabular', 'spatialpandas', 'dask_spatialpandas', 'dask', 'cuDF', 'array', 'ibis'], label='Datatype')
A priority list of the data types to be used for storage on the .data attribute. If the input supplied to the element constructor cannot be put into the requested format, the next format listed will be used until a suitable format is found (or the data fails to be understood).
- add_dimension(dimension, dim_pos, dim_val, vdim=False, **kwargs)[source]#
Adds a dimension and its values to the Dataset
Requires the dimension name or object, the desired position in the key dimensions and a key value scalar or array of values, matching the length or shape of the Dataset.
- Parameters:
- Returns:
Cloned
object
containing
the
new
dimension
- aggregate(dimensions=None, function=None, spreadfn=None, **kwargs)[source]#
Aggregates data on the supplied dimensions.
Aggregates over the supplied key dimensions with the defined function or dim_transform specified as a tuple of the transformed dimension name and dim transform.
- Parameters:
- dimensions
Dimension(s) to aggregate on Default to all key dimensions
- function
Aggregation function or transform to apply Supports both simple functions and dimension transforms
- spreadfn
Secondary reduction to compute value spread Useful for computing a confidence interval, spread, or standard deviation.
- **kwargs
Keyword arguments either passed to the aggregation function or to create new names for the transformed variables
- Returns:
Returns
the
aggregated
Dataset
- clone(data=None, shared_data=True, new_type=None, link=True, *args, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- closest(coords=None, **kwargs)[source]#
Snaps coordinate(s) to closest coordinate in Dataset
- Parameters:
- coords
List of coordinates expressed as tuples
- **kwargs
Coordinates defined as keyword pairs
- Returns:
List
of
tuples
of
the
snapped
coordinates
- Raises:
NotImplementedError
Raised if snapping is not supported
- columns(dimensions=None)[source]#
Convert dimension values to a dictionary.
Returns a dictionary of column arrays along each dimension of the element.
- Parameters:
- dimensions
Dimensions to return as columns
- Returns:
Dictionary
of
arrays
for
each
dimension
- compute()[source]#
Computes the data to a data format that stores the daata in memory, e.g. a Dask dataframe or array is converted to a Pandas DataFrame or NumPy array.
- property dataset#
The Dataset that this object was created from
- dframe(dimensions=None, multi_index=False)[source]#
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension, either completely flat or indexed by key dimensions.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- get_dimension_type(dim)[source]#
Get the type of the requested dimension.
Type is determined by Dimension.type attribute or common type of the dimension values, otherwise None.
- Parameters:
- dimension
Dimension to look up by name or by index
- Returns:
Declared
type
of
values
along
the
dimension
- groupby(dimensions=None, container_type=<class 'holoviews.core.spaces.HoloMap'>, group_type=None, dynamic=False, **kwargs)[source]#
Groups object by one or more dimensions
Applies groupby operation over the specified dimensions returning an object of type container_type (expected to be dictionary-like) containing the groups.
- Parameters:
- dimensions
Dimension(s) to group by
- container_type
Type to cast group container to
- group_type
Type to cast each group to
- dynamic
Whether to return a DynamicMap
- **kwargs
Keyword arguments to pass to each group
- Returns:
Returns
object
of
supplied
container_type
containing
the
- groups.
If
dynamic=Truereturns
a
DynamicMap
instead.
- property iloc#
Returns iloc indexer with support for columnar indexing.
Returns an iloc object providing a convenient interface to slice and index into the Dataset using row and column indices. Allow selection by integer index, slice and list of integer indices and boolean arrays.
Examples :
Index the first row and column:
dataset.iloc[0, 0]
Select rows 1 and 2 with a slice:
dataset.iloc[1:3, :]
Select with a list of integer coordinates:
dataset.iloc[[0, 2, 3]]
- map(map_fn, specs=None, clone=True)[source]#
Map a function to all objects matching the specs
Recursively replaces elements using a map function when the specs apply, by default applies to all objects, e.g. to apply the function to all contained Curve objects:
dmap.map(fn, hv.Curve)
- Parameters:
- map_fn
Function to apply to each object
- specs
List
of
specs
to
match
List of types, functions or type[.group][.label] specs to select objects to return, by default applies to all objects.
- clone
Whether to clone the object or transform inplace
- Returns:
Returns
the
object
after
the
map_fn
has
been
applied
- property ndloc#
Returns ndloc indexer with support for gridded indexing.
Returns an ndloc object providing nd-array like indexing for gridded datasets. Follows NumPy array indexing conventions, allowing for indexing, slicing and selecting a list of indices on multi-dimensional arrays using integer indices. The order of array indices is inverted relative to the Dataset key dimensions, e.g. an Image with key dimensions ‘x’ and ‘y’ can be indexed with
image.ndloc[iy, ix]
, whereiy
andix
are integer indices along the y and x dimensions.Examples :
Index value in 2D array:
dataset.ndloc[3, 1]
Slice along y-axis of 2D array:
dataset.ndloc[2:5, :]
Vectorized (non-orthogonal) indexing along x- and y-axes:
dataset.ndloc[[1, 2, 3], [0, 2, 3]]
- options(*args, clone=True, **kwargs)[source]#
Applies simplified option definition returning a new object.
Applies options on an object or nested group of objects in a flat format returning a new object with the options applied. If the options are to be set directly on the object a simple format may be used, e.g.:
obj.options(cmap=’viridis’, show_title=False)
If the object is nested the options must be qualified using a type[.group][.label] specification, e.g.:
obj.options(‘Image’, cmap=’viridis’, show_title=False)
or using:
obj.options({‘Image’: dict(cmap=’viridis’, show_title=False)})
Identical to the .opts method but returns a clone of the object by default.
- Parameters:
- *args: Sets of options to apply to object
Supports a number of formats including lists of Options objects, a type[.group][.label] followed by a set of keyword options to apply and a dictionary indexed by type[.group][.label] specs.
- backend
optional
Backend to apply options to Defaults to current selected backend
- clonebool,
optional
Whether to clone object Options can be applied inplace with clone=False
- **kwargs: Keywords of options
Set of options to apply to the object
- Returns:
- persist()[source]#
Persists the results of a lazy data interface to memory to speed up data manipulation and visualization. If the particular data backend already holds the data in memory this is a no-op. Unlike the compute method this maintains the same data type.
- property pipeline#
Chain operation that evaluates the sequence of operations that was used to create this object, starting with the Dataset stored in dataset property
- range(dim, data_range=True, dimension_range=True)[source]#
Return the lower and upper bounds of values along dimension.
- reduce(dimensions=None, function=None, spreadfn=None, **reductions)[source]#
Applies reduction along the specified dimension(s).
Allows reducing the values along one or more key dimension with the supplied function. Supports two signatures:
Reducing with a list of dimensions, e.g.:
ds.reduce([‘x’], np.mean)
Defining a reduction using keywords, e.g.:
ds.reduce(x=np.mean)
- Parameters:
- dimensions
Dimension(s) to apply reduction on Defaults to all key dimensions
- function
Reduction operation to apply, e.g. numpy.mean
- spreadfn
Secondary reduction to compute value spread Useful for computing a confidence interval, spread, or standard deviation.
- **reductions
Keyword argument defining reduction Allows reduction to be defined as keyword pair of dimension and function
- Returns:
The
Dataset
after
reductions
have
been
applied.
- reindex(kdims=None, vdims=None)[source]#
Reindexes Dataset dropping static or supplied kdims
Creates a new object with a reordered or reduced set of key dimensions. By default drops all non-varying key dimensions.x
- Parameters:
- kdims
optional
New list of key dimensions
- vdims
optional
New list of value dimensions
- kdims
- Returns:
Reindexed
object
- relabel(label=None, group=None, depth=0)[source]#
Clone object and apply new group and/or label.
Applies relabeling to children up to the supplied depth.
- Parameters:
- Returns:
Returns
relabelled
object
- sample(samples=None, bounds=None, closest=True, **kwargs)[source]#
Samples values at supplied coordinates.
Allows sampling of element with a list of coordinates matching the key dimensions, returning a new object containing just the selected samples. Supports multiple signatures:
Sampling with a list of coordinates, e.g.:
ds.sample([(0, 0), (0.1, 0.2), …])
Sampling a range or grid of coordinates, e.g.:
1D : ds.sample(3) 2D : ds.sample((3, 3))
Sampling by keyword, e.g.:
ds.sample(x=0)
- Parameters:
- Returns:
Element
containing
the
sampled
coordinates
- select(selection_expr=None, selection_specs=None, **selection)[source]#
Applies selection by dimension name
Applies a selection along the dimensions of the object using keyword arguments. The selection may be narrowed to certain objects using selection_specs. For container objects the selection will be applied to all children as well.
Selections may select a specific value, slice or set of values:
- value: Scalar values will select rows along with an exact
match, e.g.:
ds.select(x=3)
- slice: Slices may be declared as tuples of the upper and
lower bound, e.g.:
ds.select(x=(0, 3))
- values: A list of values may be selected using a list or
set, e.g.:
ds.select(x=[0, 1, 2])
predicate expression: A holoviews.dim expression, e.g.:
from holoviews import dim ds.select(selection_expr=dim(‘x’) % 2 == 0)
selections dictionary: A dictionary of selections per dimension
ds.select({x: 3})
- Parameters:
- selection_expr
A
dim
expression
ordictionary
of
selections. holoviews.dim predicate expression specifying selection or a dictionary of selections (as an alternative to selecting via keyword arguments).
- selection_specs
List
of
specs
to
match
on
A list of types, functions, or type[.group][.label] strings specifying which objects to apply the selection on.
- **selection: Dictionary declaring selections by dimension
Selections can be scalar values, tuple ranges, lists of discrete values and boolean arrays
- selection_expr
- Returns:
- property shape#
Returns the shape of the data.
- property to#
Returns the conversion interface with methods to convert Dataset
- transform(*args, **kwargs)[source]#
Transforms the Dataset according to a dimension transform.
Transforms may be supplied as tuples consisting of the dimension(s) and the dim transform to apply or keyword arguments mapping from dimension(s) to dim transforms. If the arg or kwarg declares multiple dimensions the dim transform should return a tuple of values for each.
A transform may override an existing dimension or add a new one in which case it will be added as an additional value dimension.
- Parameters:
- args
Specify the output arguments and transforms as a tuple of dimension specs and dim transforms
- dropbool
Whether to drop all variables not part of the transform
- keep_indexbool
- Whether to keep indexes
Whether to apply transform on datastructure with index, e.g. pandas.Series or xarray.DataArray, (important for dask datastructures where index may be required to align datasets).
- kwargs
Specify new dimensions in the form new_dim=dim_transform
- Returns:
Transformed
dataset
with
new
dimensions
- class holoviews.Dendrogram(*args, **kwargs)[source]#
Bases:
Path
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdims, vdimsgroup = String(constant=True, default='Dendrogram', label='Group')
A string describing the data wrapped by the object.
datatype = List(bounds=(0, None), default=['multitabular'], label='Datatype')
A priority list of the data types to be used for storage on the .data attribute. If the input supplied to the element constructor cannot be put into the requested format, the next format listed will be used until a suitable format is found (or the data fails to be understood).
- class holoviews.Dimension(spec, **params)[source]#
Bases:
Parameterized
Dimension objects are used to specify some important general features that may be associated with a collection of values.
For instance, a Dimension may specify that a set of numeric values actually correspond to ‘Height’ (dimension name), in units of meters, with a descriptive label ‘Height of adult males’.
All dimensions object have a name that identifies them and a label containing a suitable description. If the label is not explicitly specified it matches the name.
These two parameters define the core identity of the dimension object and must match if two dimension objects are to be considered equivalent. All other parameters are considered optional metadata and are not used when testing for equality.
Unlike all the other parameters, these core parameters can be used to construct a Dimension object from a tuple. This format is sufficient to define an identical Dimension:
Dimension(‘a’, label=’Dimension A’) == Dimension((‘a’, ‘Dimension A’))
Everything else about a dimension is considered to reflect non-semantic preferences. Examples include the default value (which may be used in a visualization to set an initial slider position), how the value is to rendered as text (which may be used to specify the printed floating point precision) or a suitable range of values to consider for a particular analysis.
- Attributes:
pprint_label
The pretty-printed label string for the Dimension
spec
“Returns the Dimensions tuple specification
- type
Methods
clone
([spec])Clones the Dimension with new parameters
pprint_value
(value[, print_unit])Applies the applicable formatter to the value.
pprint_value_string
(value)Pretty print the dimension value and unit with title_format
pprint
Notes
Full unit support with automated conversions are on the HoloViews roadmap. Once rich unit objects are supported, the unit (or more specifically the type of unit) will be part of the core dimension specification used to establish equality.
Until this feature is implemented, there are two auxiliary parameters that hold some partial information about the unit: the name of the unit and whether or not it is cyclic. The name of the unit is used as part of the pretty-printed representation and knowing whether it is cyclic is important for certain operations.
Parameter Definitions
label = String(allow_None=True, label='Label')
Unrestricted label used to describe the dimension. A label should succinctly describe the dimension and may contain any characters, including Unicode and LaTeX expression.
cyclic = Boolean(default=False, label='Cyclic')
Whether the range of this feature is cyclic such that the maximum allowed value (defined by the range parameter) is continuous with the minimum allowed value.
default = Parameter(allow_None=True, label='Default')
Default value of the Dimension which may be useful for widget or other situations that require an initial or default value.
nodata = Integer(allow_None=True, inclusive_bounds=(True, True), label='Nodata')
Optional missing-data value for integer data. If non-None, data with this value will be replaced with NaN.
range = Tuple(default=(None, None), label='Range', length=2)
Specifies the minimum and maximum allowed values for a Dimension. None is used to represent an unlimited bound.
soft_range = Tuple(default=(None, None), label='Soft range', length=2)
Specifies a minimum and maximum reference value, which may be overridden by the data.
step = Number(allow_None=True, inclusive_bounds=(True, True), label='Step')
Optional floating point step specifying how frequently the underlying space should be sampled. May be used to define a discrete sampling over the range.
type = Parameter(allow_None=True, label='Type')
Optional type associated with the Dimension values. The type may be an inbuilt constructor (such as int, str, float) or a custom class object.
unit = String(allow_None=True, label='Unit')
Optional unit string associated with the Dimension. For instance, the string ‘m’ may be used represent units of meters and ‘s’ to represent units of seconds.
value_format = Callable(allow_None=True, label='Value format')
Formatting function applied to each value before display.
values = List(bounds=(0, None), default=[], label='Values')
Optional specification of the allowed value set for the dimension that may also be used to retain a categorical ordering.
- clone(spec=None, **overrides)[source]#
Clones the Dimension with new parameters
Derive a new Dimension that inherits existing parameters except for the supplied, explicit overrides
- property pprint_label#
The pretty-printed label string for the Dimension
- pprint_value(value, print_unit=False)[source]#
Applies the applicable formatter to the value.
- Parameters:
- value
Dimension value to format
- Returns:
Formatted
dimension
value
- class holoviews.Distribution(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,StatisticsElement
Distribution elements provides a representation for a one-dimensional distribution which can be visualized as a kernel density estimate. The data should be supplied in a tabular format and will use the first column.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Distribution', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(1, 1), default=[Dimension('Value')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
vdims = List(bounds=(0, 1), default=[Dimension('Density')], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- class holoviews.Div(data, **params)[source]#
Bases:
Element
The Div element represents a div DOM node in an HTML document defined as a string containing valid HTML.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='Div', label='Group')
A string describing the data wrapped by the object.
- class holoviews.DynamicMap(callback, initial_items=None, streams=None, **params)[source]#
Bases:
HoloMap
A DynamicMap is a type of HoloMap where the elements are dynamically generated by a callable. The callable is invoked with values associated with the key dimensions or with values supplied by stream parameters.
- Attributes:
current_key
Returns the current key value.
- opts
- redim
unbounded
Returns a list of key dimensions that are unbounded, excluding stream parameters.
Methods
add_dimension
(dimension, dim_pos, dim_val[, ...])Adds a dimension and its values to the object
clone
([data, shared_data, new_type, link])Clones the object, overriding data and parameters.
collate
()Unpacks DynamicMap into container of DynamicMaps
Packs DynamicMap of nested DynamicMaps into a single DynamicMap that returns a non-dynamic element
drop_dimension
(dimensions)Drops dimension(s) from keys
event
(**kwargs)Updates attached streams and triggers events
grid
([dimensions])Groups data by supplied dimension(s) laying the groups along the dimension(s) out in a GridSpace.
groupby
([dimensions, container_type, group_type])Groups DynamicMap by one or more dimensions
hist
([dimension, num_bins, bin_range, adjoin])Computes and adjoins histogram along specified dimension(s).
layout
([dimensions])Groups data by supplied dimension(s) laying the groups along the dimension(s) out in a NdLayout.
map
(map_fn[, specs, clone, link_inputs])Map a function to all objects matching the specs
options
(*args, **kwargs)Applies simplified option definition returning a new object.
overlay
([dimensions])Group by supplied dimension(s) and overlay each group
reindex
([kdims, force])Reorders key dimensions on DynamicMap
relabel
([label, group, depth])Clone object and apply new group and/or label.
reset
()Clear the DynamicMap cache
select
([selection_specs])Applies selection by dimension name
Parameter Definitions
Parameters inherited from:
kdims = List(bounds=(0, None), constant=True, default=[], label='Kdims')
The key dimensions of a DynamicMap map to the arguments of the callback. This mapping can be by position or by name.
callback = ClassSelector(allow_None=True, class_=<class 'holoviews.core.spaces.Callable'>, constant=True, label='Callback')
The callable used to generate the elements. The arguments to the callable includes any number of declared key dimensions as well as any number of stream parameters defined on the input streams. If the callable is an instance of Callable it will be used directly, otherwise it will be automatically wrapped in one.
streams = List(bounds=(0, None), constant=True, default=[], label='Streams')
List of Stream instances to associate with the DynamicMap. The set of parameter values across these streams will be supplied as keyword arguments to the callback when the events are received, updating the streams. Can also be supplied as a dictionary that maps parameters or panel widgets to callback argument names that will then be automatically converted to the equivalent list format.
cache_size = Integer(bounds=(1, None), default=500, inclusive_bounds=(True, True), label='Cache size')
The number of entries to cache for fast access. This is an LRU cache where the least recently used item is overwritten once the cache is full.
positional_stream_args = Boolean(constant=True, default=False, label='Positional stream args')
If False, stream parameters are passed to the callback as keyword arguments. If True, stream parameters are passed to callback as positional arguments. Each positional argument is a dict containing the contents of a stream. The positional stream arguments follow the positional arguments for each kdim, and they are ordered to match the order of the DynamicMap’s streams list.
- add_dimension(dimension, dim_pos, dim_val, vdim=False, **kwargs)[source]#
Adds a dimension and its values to the object
Requires the dimension name or object, the desired position in the key dimensions and a key value scalar or sequence of the same length as the existing keys.
- Parameters:
- Returns:
Cloned
object
containing
the
new
dimension
- clone(data=None, shared_data=True, new_type=None, link=True, *args, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- collate()[source]#
Unpacks DynamicMap into container of DynamicMaps
Collation allows unpacking DynamicMaps which return Layout, NdLayout or GridSpace objects into a single such object containing DynamicMaps. Assumes that the items in the layout or grid that is returned do not change.
- Returns:
Collated
container
containing
DynamicMaps
- property current_key#
Returns the current key value.
- decollate()[source]#
Packs DynamicMap of nested DynamicMaps into a single DynamicMap that returns a non-dynamic element
Decollation allows packing a DynamicMap of nested DynamicMaps into a single DynamicMap that returns a simple (non-dynamic) element. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
a
non-dynamicelement
- drop_dimension(dimensions)[source]#
Drops dimension(s) from keys
- Parameters:
- dimensions
Dimension(s) to drop
- Returns:
Clone
of
object
with
with
dropped
dimension
(s
)
- event(**kwargs)[source]#
Updates attached streams and triggers events
Automatically find streams matching the supplied kwargs to update and trigger events on them.
- Parameters:
- **kwargs
Events to update streams with
- grid(dimensions=None, **kwargs)[source]#
Groups data by supplied dimension(s) laying the groups along the dimension(s) out in a GridSpace.
- groupby(dimensions=None, container_type=None, group_type=None, **kwargs)[source]#
Groups DynamicMap by one or more dimensions
Applies groupby operation over the specified dimensions returning an object of type container_type (expected to be dictionary-like) containing the groups.
- Parameters:
- dimensions
Dimension
(s
)to
group
by
- container_type
Type
to
cast
group
container
to
- group_type
Type
to
cast
each
group
to
- dynamic
Whether
to
return
a
DynamicMap
- **kwargs: Keyword arguments to pass to each group
- dimensions
- Returns:
Returns
object
of
supplied
container_type
containing
the
- groups.
If
dynamic=Truereturns
a
DynamicMap
instead.
- hist(dimension=None, num_bins=20, bin_range=None, adjoin=True, **kwargs)[source]#
Computes and adjoins histogram along specified dimension(s).
Defaults to first value dimension if present otherwise falls back to first key dimension.
- Parameters:
- Returns:
AdjointLayout
of
DynamicMap
and
adjoined
histogram
if
- adjoin=True,
otherwise
just
the
histogram
- layout(dimensions=None, **kwargs)[source]#
Groups data by supplied dimension(s) laying the groups along the dimension(s) out in a NdLayout.
- map(map_fn, specs=None, clone=True, link_inputs=True)[source]#
Map a function to all objects matching the specs
Recursively replaces elements using a map function when the specs apply, by default applies to all objects, e.g. to apply the function to all contained Curve objects:
dmap.map(fn, hv.Curve)
- Parameters:
- Returns:
Returns
the
object
after
the
map_fn
has
been
applied
- options(*args, **kwargs)[source]#
Applies simplified option definition returning a new object.
Applies options defined in a flat format to the objects returned by the DynamicMap. If the options are to be set directly on the objects returned by the DynamicMap a simple format may be used, e.g.:
obj.options(cmap=’viridis’, show_title=False)
If the object is nested the options must be qualified using a type[.group][.label] specification, e.g.:
obj.options(‘Image’, cmap=’viridis’, show_title=False)
or using:
obj.options({‘Image’: dict(cmap=’viridis’, show_title=False)})
- Parameters:
- *args
Sets of options to apply to object Supports a number of formats including lists of Options objects, a type[.group][.label] followed by a set of keyword options to apply and a dictionary indexed by type[.group][.label] specs.
- backend
optional
Backend to apply options to Defaults to current selected backend
- clonebool,
optional
Whether to clone object Options can be applied inplace with clone=False
- **kwargs
Keywords of options Set of options to apply to the object
- Returns:
- overlay(dimensions=None, **kwargs)[source]#
Group by supplied dimension(s) and overlay each group
Groups data by supplied dimension(s) overlaying the groups along the dimension(s).
- reindex(kdims=None, force=False)[source]#
Reorders key dimensions on DynamicMap
Create a new object with a reordered set of key dimensions. Dropping dimensions is not allowed on a DynamicMap.
- Parameters:
- kdims
List
of
dimensions
to
reindex
the
mapping
with
- force
Not
applicable
to
a
DynamicMap
- kdims
- Returns:
Reindexed
DynamicMap
- relabel(label=None, group=None, depth=1)[source]#
Clone object and apply new group and/or label.
Applies relabeling to children up to the supplied depth.
- Parameters:
- Returns:
Returns
relabelled
object
- select(selection_specs=None, **kwargs)[source]#
Applies selection by dimension name
Applies a selection along the dimensions of the object using keyword arguments. The selection may be narrowed to certain objects using selection_specs. For container objects the selection will be applied to all children as well.
Selections may select a specific value, slice or set of values:
- value: Scalar values will select rows along with an exact
match, e.g.:
ds.select(x=3)
- slice: Slices may be declared as tuples of the upper and
lower bound, e.g.:
ds.select(x=(0, 3))
- values: A list of values may be selected using a list or
set, e.g.:
ds.select(x=[0, 1, 2])
- Parameters:
- selection_specs
List
of
specs
to
match
on
A list of types, functions, or type[.group][.label] strings specifying which objects to apply the selection on.
- **selection: Dictionary declaring selections by dimension
Selections can be scalar values, tuple ranges, lists of discrete values and boolean arrays
- selection_specs
- Returns:
- property unbounded#
Returns a list of key dimensions that are unbounded, excluding stream parameters. If any of these key dimensions are unbounded, the DynamicMap as a whole is also unbounded.
- class holoviews.EdgePaths(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Path
EdgePaths is a simple Element representing the paths of edges connecting nodes in a graph.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdims, vdimsholoviews.element.path.Path
: datatypegroup = String(constant=True, default='EdgePaths', label='Group')
A string describing the data wrapped by the object.
- class holoviews.Element(data, kdims=None, vdims=None, **params)[source]#
Bases:
ViewableElement
,Composable
,Overlayable
Element is the atomic datastructure used to wrap some data with an associated visual representation, e.g. an element may represent a set of points, an image or a curve. Elements provide a common API for interacting with data of different types and define how the data map to a set of dimensions and how those map to the visual representation.
Methods
array
([dimensions])Convert dimension values to columnar array.
closest
(coords, **kwargs)Snap list or dict of coordinates to closest position.
dframe
([dimensions, multi_index])Convert dimension values to DataFrame.
hist
([dimension, num_bins, bin_range, adjoin])Computes and adjoins histogram along specified dimension(s).
reduce
([dimensions, function, spreadfn])Applies reduction along the specified dimension(s).
sample
([samples, bounds, closest])Samples values at supplied coordinates.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='Element', label='Group')
A string describing the data wrapped by the object.
- array(dimensions=None)[source]#
Convert dimension values to columnar array.
- Parameters:
- dimensions
List of dimensions to return
- Returns:
Array
of
columns
corresponding
to
each
dimension
- closest(coords, **kwargs)[source]#
Snap list or dict of coordinates to closest position.
- Parameters:
- coords
List of 1D or 2D coordinates
- **kwargs
Coordinates specified as keyword pairs
- Returns:
List
of
tuples
of
the
snapped
coordinates
- Raises:
NotImplementedError
Raised if snapping is not supported
- dframe(dimensions=None, multi_index=False)[source]#
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension, either completely flat or indexed by key dimensions.
- Parameters:
- dimensions
Dimensions to return as columns
- multi_index
Convert key dimensions to (multi-)index
- Returns:
DataFrame
of
columns
corresponding
to
each
dimension
- hist(dimension=None, num_bins=20, bin_range=None, adjoin=True, **kwargs)[source]#
Computes and adjoins histogram along specified dimension(s).
Defaults to first value dimension if present otherwise falls back to first key dimension.
- Parameters:
- Returns:
AdjointLayout
of
element
and
histogram
orjust
the
histogram
- reduce(dimensions=None, function=None, spreadfn=None, **reduction)[source]#
Applies reduction along the specified dimension(s).
Allows reducing the values along one or more key dimension with the supplied function. Supports two signatures:
Reducing with a list of dimensions, e.g.:
ds.reduce([‘x’], np.mean)
Defining a reduction using keywords, e.g.:
ds.reduce(x=np.mean)
- Parameters:
- dimensions
Dimension(s) to apply reduction on Defaults to all key dimensions
- function
Reduction operation to apply, e.g. numpy.mean
- spreadfn
Secondary reduction to compute value spread Useful for computing a confidence interval, spread, or standard deviation.
- **reductions
Keyword argument defining reduction Allows reduction to be defined as keyword pair of dimension and function
- Returns:
The
element
after
reductions
have
been
applied.
- sample(samples=None, bounds=None, closest=False, **sample_values)[source]#
Samples values at supplied coordinates.
Allows sampling of element with a list of coordinates matching the key dimensions, returning a new object containing just the selected samples. Supports multiple signatures:
Sampling with a list of coordinates, e.g.:
ds.sample([(0, 0), (0.1, 0.2), …])
Sampling a range or grid of coordinates, e.g.:
1D : ds.sample(3) 2D : ds.sample((3, 3))
Sampling by keyword, e.g.:
ds.sample(x=0)
- Parameters:
- samples
List of nd-coordinates to sample
- bounds
Bounds of the region to sample Defined as two-tuple for 1D sampling and four-tuple for 2D sampling.
- closest
Whether to snap to closest coordinates
- **kwargs
Coordinates specified as keyword pairs Keywords of dimensions and scalar coordinates
- Returns:
Element
containing
the
sampled
coordinates
- class holoviews.Ellipse(*args, **kwargs)[source]#
Bases:
BaseShape
Draw an axis-aligned ellipse at the specified x,y position with the given orientation.
The simplest (default) Ellipse is a circle, specified using:
Ellipse(x,y, diameter)
A circle is a degenerate ellipse where the width and height are equal. To specify these explicitly, you can use:
Ellipse(x,y, (width, height))
There is also an aspect parameter allowing you to generate an ellipse by specifying a multiplicating factor that will be applied to the height only.
Note that as a subclass of Path, internally an Ellipse is a sequence of (x,y) sample positions. Ellipse could also be implemented as an annotation that uses a dedicated ellipse artist.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdims, vdimsholoviews.element.path.Path
: datatypegroup = String(constant=True, default='Ellipse', label='Group')
The assigned group name.
x = Number(default=0, inclusive_bounds=(True, True), label='X')
The x-position of the ellipse center.
y = Number(default=0, inclusive_bounds=(True, True), label='Y')
The y-position of the ellipse center.
width = Number(default=1, inclusive_bounds=(True, True), label='Width')
The width of the ellipse.
height = Number(default=1, inclusive_bounds=(True, True), label='Height')
The height of the ellipse.
orientation = Number(default=0, inclusive_bounds=(True, True), label='Orientation')
Orientation in the Cartesian coordinate system, the counterclockwise angle in radians between the first axis and the horizontal.
aspect = Number(default=1.0, inclusive_bounds=(True, True), label='Aspect')
Optional multiplier applied to the diameter to compute the width in cases where only the diameter value is set.
samples = Number(default=100, inclusive_bounds=(True, True), label='Samples')
The sample count used to draw the ellipse.
- class holoviews.Empty(*, cdims, kdims, vdims, group, label, name)[source]#
Bases:
Dimensioned
,Composable
Empty may be used to define an empty placeholder in a Layout. It can be placed in a Layout just like any regular Element and container type via the + operator or by passing it to the Layout constructor as a part of a list.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(default='Empty', label='Group')
A string describing the data wrapped by the object.
- class holoviews.ErrorBars(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Chart
ErrorBars is a Chart element representing error bars in a 1D coordinate system where the key dimension corresponds to the location along the x-axis and the first value dimension corresponds to the location along the y-axis and one or two extra value dimensions corresponding to the symmetric or asymmetric errors either along x-axis or y-axis. If two value dimensions are given, then the last value dimension will be taken as symmetric errors. If three value dimensions are given then the last two value dimensions will be taken as negative and positive errors. By default the errors are defined along y-axis. A parameter horizontal, when set True, will define the errors along the x-axis.
Methods
range
(dim[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='ErrorBars', label='Group')
A string describing the quantity measured by the ErrorBars object.
vdims = List(bounds=(1, None), constant=True, default=[Dimension('y'), Dimension('yerror')], label='Vdims')
The value dimensions of the Chart, usually corresponding to a number of dependent variables.
horizontal = Boolean(default=False, label='Horizontal')
Whether the errors are along y-axis (vertical) or x-axis.
- class holoviews.Graph(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
Graph is high-level Element representing both nodes and edges. A Graph may be defined in an abstract form representing just the abstract edges between nodes and optionally may be made concrete by supplying a Nodes Element defining the concrete positions of each node. If the node positions are supplied the EdgePaths (defining the concrete edges) can be inferred automatically or supplied explicitly.
The constructor accepts regular columnar data defining the edges or a tuple of the abstract edges and nodes, or a tuple of the abstract edges, nodes, and edgepaths.
- Attributes:
Methods
clone
([data, shared_data, new_type, link])Clones the object, overriding data and parameters.
dimensions
([selection, label])Lists the available dimensions on the object
alias of
EdgePaths
from_networkx
(G, positions[, nodes])Generate a HoloViews Graph from a networkx.Graph object and networkx layout function or dictionary of node positions.
alias of
Nodes
range
(dimension[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
select
([selection_expr, selection_specs, ...])Allows selecting data by the slices, sets and scalar values along a particular dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Graph', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('start'), Dimension('end')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- clone(data=None, shared_data=True, new_type=None, link=True, *args, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- dimensions(selection='all', label=False)[source]#
Lists the available dimensions on the object
Provides convenient access to Dimensions on nested Dimensioned objects. Dimensions can be selected by their type, i.e. ‘key’ or ‘value’ dimensions. By default ‘all’ dimensions are returned.
- Parameters:
- selection
Type
of
dimensions
to
return
The type of dimension, i.e. one of ‘key’, ‘value’, ‘constant’ or ‘all’.
- label
Whether
to
return
the
name
,label
orDimension
Whether to return the Dimension objects (False), the Dimension names (True/’name’) or labels (‘label’).
- selection
- Returns:
List
of
Dimension
objects
ortheir
names
orlabels
- property edgepaths#
Returns the fixed EdgePaths or computes direct connections between supplied nodes.
- classmethod from_networkx(G, positions, nodes=None, **kwargs)[source]#
Generate a HoloViews Graph from a networkx.Graph object and networkx layout function or dictionary of node positions. Any keyword arguments will be passed to the layout function. By default it will extract all node and edge attributes from the networkx.Graph but explicit node information may also be supplied. Any non-scalar attributes, such as lists or dictionaries will be ignored.
- Parameters:
- G
networkx.Graph
Graph to convert to Graph element
- positions
dict
orcallable()
Node positions Node positions defined as a dictionary mapping from node id to (x, y) tuple or networkx layout function which computes a positions dictionary
- kwargs
dict
Keyword arguments for layout function
- G
- Returns:
- property nodes#
Computes the node positions the first time they are requested if no explicit node information was supplied.
- range(dimension, data_range=True, dimension_range=True)[source]#
Return the lower and upper bounds of values along dimension.
- select(selection_expr=None, selection_specs=None, selection_mode='edges', **selection)[source]#
Allows selecting data by the slices, sets and scalar values along a particular dimension. The indices should be supplied as keywords mapping between the selected dimension and value. Additionally selection_specs (taking the form of a list of type.group.label strings, types or functions) may be supplied, which will ensure the selection is only applied if the specs match the selected object.
Selecting by a node dimensions selects all edges and nodes that are connected to the selected nodes. To select only edges between the selected nodes set the selection_mode to ‘nodes’.
- class holoviews.GridMatrix(initial_items=None, kdims=None, **params)[source]#
Bases:
GridSpace
GridMatrix is container type for heterogeneous Element types laid out in a grid. Unlike a GridSpace the axes of the Grid must not represent an actual coordinate space, but may be used to plot various dimensions against each other. The GridMatrix is usually constructed using the gridmatrix operation, which will generate a GridMatrix plotting each dimension in an Element against each other.
Parameter Definitions
Parameters inherited from:
- class holoviews.GridSpace(initial_items=None, kdims=None, **params)[source]#
Bases:
Layoutable
,UniformNdMapping
Grids are distinct from Layouts as they ensure all contained elements to be of the same type. Unlike Layouts, which have integer keys, Grids usually have floating point keys, which correspond to a grid sampling in some two-dimensional space. This two-dimensional space may have to arbitrary dimensions, e.g. for 2D parameter spaces.
- Attributes:
Methods
Packs GridSpace of DynamicMaps into a single DynamicMap that returns a GridSpace
keys
([full_grid])Returns the keys of the GridSpace
Parameter Definitions
Parameters inherited from:
kdims = List(bounds=(1, 2), default=[Dimension('X'), Dimension('Y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- decollate()[source]#
Packs GridSpace of DynamicMaps into a single DynamicMap that returns a GridSpace
Decollation allows packing a GridSpace of DynamicMaps into a single DynamicMap that returns a GridSpace of simple (non-dynamic) elements. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
a
GridSpace
- property last#
The last of a GridSpace is another GridSpace constituted of the last of the individual elements. To access the elements by their X,Y position, either index the position directly or use the items() method.
- property shape#
Returns the 2D shape of the GridSpace as (rows, cols).
- class holoviews.HLine(y, **params)[source]#
Bases:
Annotation
Horizontal line annotation at the given position.
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='HLine', label='Group')
A string describing the data wrapped by the object.
y = ClassSelector(class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='Y')
The y-position of the HLine which make be numeric or a timestamp.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.HLines(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
VectorizedAnnotation
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='HLines', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(1, 1), default=[Dimension('y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- class holoviews.HSV(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
RGB
HSV represents a regularly spaced 2D grid of an underlying continuous space of HSV (hue, saturation and value) color space values. The definition of the grid closely matches the semantics of an Image or RGB element and in the simplest case the grid may be specified as a NxMx3 or NxMx4 array of values along with a bounds, but it may also be defined through explicit and regularly spaced x/y-coordinate arrays. The two most basic supported constructors of an HSV element therefore include:
HSV((X, Y, H, S, V))
where X is a 1D array of shape M, Y is a 1D array of shape N and H/S/V are 2D array of shape NxM, or equivalently:
HSV(Z, bounds=(x0, y0, x1, y1))
where Z is a 3D array of stacked H/S/V arrays with shape NxMx3/4 and the bounds define the (left, bottom, top, right) edges of the four corners of the grid. Other gridded formats which support declaring of explicit x/y-coordinate arrays such as xarray are also supported.
Note that the interpretation of the orientation changes depending on whether bounds or explicit coordinates are used.
- Attributes:
rgb
Conversion from HSV to RGB.
Methods
hsv_to_rgb
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.raster.Image
: kdims, datatype, bounds, rtolgroup = String(constant=True, default='HSV', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(3, 4), default=[Dimension('H'), Dimension('S'), Dimension('V')], label='Vdims')
The dimension description of the data held in the array. If an alpha channel is supplied, the defined alpha_dimension is automatically appended to this list.
alpha_dimension = ClassSelector(class_=<class 'holoviews.core.dimension.Dimension'>, default=Dimension('A'), label='Alpha dimension')
The alpha dimension definition to add the value dimensions if an alpha channel is supplied.
- property rgb#
Conversion from HSV to RGB.
- class holoviews.HSpan(y1=None, y2=None, **params)[source]#
Bases:
Annotation
Horizontal span annotation at the given position.
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='HSpan', label='Group')
A string describing the data wrapped by the object.
y1 = ClassSelector(allow_None=True, class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='Y1')
The start y-position of the VSpan which must be numeric or a timestamp.
y2 = ClassSelector(allow_None=True, class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='Y2')
The end y-position of the VSpan which must be numeric or a timestamp.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.HSpans(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
VectorizedAnnotation
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='HSpans', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('y0'), Dimension('y1')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- class holoviews.HeatMap(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,Dataset
,Element2D
HeatMap represents a 2D grid of categorical coordinates which can be computed from a sparse tabular representation. A HeatMap does not automatically aggregate the supplied values, so if the data contains multiple entries for the same coordinate on the 2D grid it should be aggregated using the aggregate method before display.
The HeatMap constructor will support any tabular or gridded data format with 2 coordinates and at least one value dimension. A simple example:
HeatMap([(x1, y1, z1), (x2, y2, z2), …])
However any tabular and gridded format, including pandas DataFrames, dictionaries of columns, xarray DataArrays and more are supported if the library is importable.
- Attributes:
- gridded
Methods
range
(dim[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='HeatMap', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), constant=True, default=[Dimension('x'), Dimension('y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
vdims = List(bounds=(0, None), constant=True, default=[Dimension('z')], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- class holoviews.HexTiles(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,Dataset
,Element2D
HexTiles is a statistical element with a visual representation that renders a density map of the data values as a hexagonal grid.
Before display the data is aggregated either by counting the values in each hexagonal bin or by computing aggregates.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='HexTiles', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('x'), Dimension('y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- class holoviews.Histogram(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Chart
Histogram is a Chart element representing a number of bins in a 1D coordinate system. The key dimension represents the binned values, which may be declared as bin edges or bin centers, while the value dimensions usually defines a count, frequency or density associated with each bin.
- Attributes:
edges
Property to access the Histogram edges provided for backward compatibility
Parameter Definitions
Parameters inherited from:
group = String(constant=True, default='Histogram', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(1, 1), default=[Dimension('x')], label='Kdims')
Dimensions on Element2Ds determine the number of indexable dimensions.
vdims = List(bounds=(1, None), default=[Dimension('Frequency')], label='Vdims')
The value dimensions of the Chart, usually corresponding to a number of dependent variables.
datatype = List(bounds=(0, None), default=['grid'], label='Datatype')
A priority list of the data types to be used for storage on the .data attribute. If the input supplied to the element constructor cannot be put into the requested format, the next format listed will be used until a suitable format is found (or the data fails to be understood).
- property edges#
Property to access the Histogram edges provided for backward compatibility
- class holoviews.HoloMap(initial_items=None, kdims=None, group=None, label=None, **params)[source]#
Bases:
Layoutable
,UniformNdMapping
,Overlayable
A HoloMap is an n-dimensional mapping of viewable elements or overlays. Each item in a HoloMap has an tuple key defining the values along each of the declared key dimensions, defining the discretely sampled space of values.
The visual representation of a HoloMap consists of the viewable objects inside the HoloMap which can be explored by varying one or more widgets mapping onto the key dimensions of the HoloMap.
- Attributes:
- opts
Methods
collate
([merge_type, drop, drop_constant])Collate allows reordering nested containers
Packs HoloMap of DynamicMaps into a single DynamicMap that returns an HoloMap
grid
([dimensions])Group by supplied dimension(s) and lay out groups in grid
hist
([dimension, num_bins, bin_range, ...])Computes and adjoins histogram along specified dimension(s).
layout
([dimensions])Group by supplied dimension(s) and lay out groups
options
(*args, **kwargs)Applies simplified option definition returning a new object
overlay
([dimensions])Group by supplied dimension(s) and overlay each group
relabel
([label, group, depth])Clone object and apply new group and/or label.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.ndmapping.MultiDimensionalMapping
: kdims, vdims, sort- collate(merge_type=None, drop=None, drop_constant=False)[source]#
Collate allows reordering nested containers
Collation allows collapsing nested mapping types by merging their dimensions. In simple terms in merges nested containers into a single merged type.
In the simple case a HoloMap containing other HoloMaps can easily be joined in this way. However collation is particularly useful when the objects being joined are deeply nested, e.g. you want to join multiple Layouts recorded at different times, collation will return one Layout containing HoloMaps indexed by Time. Changing the merge_type will allow merging the outer Dimension into any other UniformNdMapping type.
- decollate()[source]#
Packs HoloMap of DynamicMaps into a single DynamicMap that returns an HoloMap
Decollation allows packing a HoloMap of DynamicMaps into a single DynamicMap that returns an HoloMap of simple (non-dynamic) elements. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
an
HoloMap
- grid(dimensions=None, **kwargs)[source]#
Group by supplied dimension(s) and lay out groups in grid
Groups data by supplied dimension(s) laying the groups along the dimension(s) out in a GridSpace.
- hist(dimension=None, num_bins=20, bin_range=None, adjoin=True, individually=True, **kwargs)[source]#
Computes and adjoins histogram along specified dimension(s).
Defaults to first value dimension if present otherwise falls back to first key dimension.
- Parameters:
- Returns:
AdjointLayout
of
HoloMap
and
histograms
orjust
the
histograms
- layout(dimensions=None, **kwargs)[source]#
Group by supplied dimension(s) and lay out groups
Groups data by supplied dimension(s) laying the groups along the dimension(s) out in a NdLayout.
- Parameters:
- dimensions
Dimension(s) to group by
- Returns:
NdLayout
with
supplied
dimensions
- options(*args, **kwargs)[source]#
Applies simplified option definition returning a new object
Applies options defined in a flat format to the objects returned by the DynamicMap. If the options are to be set directly on the objects in the HoloMap a simple format may be used, e.g.:
obj.options(cmap=’viridis’, show_title=False)
If the object is nested the options must be qualified using a type[.group][.label] specification, e.g.:
obj.options(‘Image’, cmap=’viridis’, show_title=False)
or using:
obj.options({‘Image’: dict(cmap=’viridis’, show_title=False)})
- Parameters:
- *args
Sets of options to apply to object Supports a number of formats including lists of Options objects, a type[.group][.label] followed by a set of keyword options to apply and a dictionary indexed by type[.group][.label] specs.
- backend
optional
Backend to apply options to Defaults to current selected backend
- clonebool,
optional
Whether to clone object Options can be applied inplace with clone=False
- **kwargs: Keywords of options
Set of options to apply to the object
- Returns:
- overlay(dimensions=None, **kwargs)[source]#
Group by supplied dimension(s) and overlay each group
Groups data by supplied dimension(s) overlaying the groups along the dimension(s).
- exception holoviews.HoloviewsDeprecationWarning[source]#
Bases:
DeprecationWarning
A Holoviews-specific
DeprecationWarning
subclass. Used to selectively filter Holoviews deprecations for unconditional display.
- exception holoviews.HoloviewsUserWarning[source]#
Bases:
UserWarning
A Holoviews-specific
UserWarning
subclass. Used to selectively filter Holoviews warnings for unconditional display.
- class holoviews.Image(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,Dataset
,Raster
,SheetCoordinateSystem
Image represents a regularly sampled 2D grid of an underlying continuous space of intensity values, which will be colormapped on plotting. The grid of intensity values may be specified as a NxM sized array of values along with a bounds, but it may also be defined through explicit and regularly spaced x/y-coordinate arrays of shape M and N respectively. The two most basic supported constructors of an Image therefore include:
Image((X, Y, Z))
where X is a 1D array of shape M, Y is a 1D array of shape N and Z is a 2D array of shape NxM, or equivalently:
Image(Z, bounds=(x0, y0, x1, y1))
where Z is a 2D array of shape NxM defining the intensity values and the bounds define the (left, bottom, top, right) edges of four corners of the grid. Other gridded formats which support declaring of explicit x/y-coordinate arrays such as xarray are also supported.
Note that the interpretation of the orientation of the array changes depending on whether bounds or explicit coordinates are used.
Methods
aggregate
([dimensions, function, spreadfn])Aggregates data on the supplied dimensions.
clone
([data, shared_data, new_type, link])Returns a clone of the object with matching parameter values containing the specified args and kwargs.
closest
([coords])Given a single coordinate or multiple coordinates as a tuple or list of tuples or keyword arguments matching the dimension closest will find the closest actual x/y coordinates.
range
(dim[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
select
([selection_expr, selection_specs])Allows selecting data by the slices, sets and scalar values along a particular dimension.
Parameter Definitions
Parameters inherited from:
group = String(constant=True, default='Image', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), constant=True, default=[Dimension('x'), Dimension('y')], label='Kdims')
The label of the x- and y-dimension of the Raster in the form of a string or dimension object.
vdims = List(bounds=(1, None), default=[Dimension('z')], label='Vdims')
The dimension description of the data held in the matrix.
datatype = List(bounds=(0, None), default=['grid', 'xarray', 'image', 'cube', 'dataframe', 'dictionary'], label='Datatype')
A priority list of the data types to be used for storage on the .data attribute. If the input supplied to the element constructor cannot be put into the requested format, the next format listed will be used until a suitable format is found (or the data fails to be understood).
bounds = ClassSelector(class_=<class 'holoviews.core.boundingregion.BoundingRegion'>, default=BoundingBox(radius=0.5), label='Bounds')
The bounding region in sheet coordinates containing the data.
rtol = Number(allow_None=True, inclusive_bounds=(True, True), label='Rtol')
The tolerance used to enforce regular sampling for regular, gridded data where regular sampling is expected. Expressed as the maximal allowable sampling difference between sample locations.
- aggregate(dimensions=None, function=None, spreadfn=None, **kwargs)[source]#
Aggregates data on the supplied dimensions.
Aggregates over the supplied key dimensions with the defined function or dim_transform specified as a tuple of the transformed dimension name and dim transform.
- Parameters:
- dimensions
Dimension(s) to aggregate on Default to all key dimensions
- function
Aggregation function or transform to apply Supports both simple functions and dimension transforms
- spreadfn
Secondary reduction to compute value spread Useful for computing a confidence interval, spread, or standard deviation.
- **kwargs
Keyword arguments either passed to the aggregation function or to create new names for the transformed variables
- Returns:
Returns
the
aggregated
Dataset
- clone(data=None, shared_data=True, new_type=None, link=True, *args, **overrides)[source]#
Returns a clone of the object with matching parameter values containing the specified args and kwargs.
If shared_data is set to True and no data explicitly supplied, the clone will share data with the original. May also supply a new_type, which will inherit all shared parameters.
- closest(coords=None, **kwargs)[source]#
Given a single coordinate or multiple coordinates as a tuple or list of tuples or keyword arguments matching the dimension closest will find the closest actual x/y coordinates.
- range(dim, data_range=True, dimension_range=True)[source]#
Return the lower and upper bounds of values along dimension.
- select(selection_expr=None, selection_specs=None, **selection)[source]#
Allows selecting data by the slices, sets and scalar values along a particular dimension. The indices should be supplied as keywords mapping between the selected dimension and value. Additionally selection_specs (taking the form of a list of type.group.label strings, types or functions) may be supplied, which will ensure the selection is only applied if the specs match the selected object.
- class holoviews.ImageStack(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Image
ImageStack expands the capabilities of Image to by supporting multiple layers of images.
As there is many ways to represent multiple layers of images, the following options are supported:
A 3D Numpy array with the shape (y, x, level)
A list of 2D Numpy arrays with identical shape (y, x)
- A dictionary where the keys will be set as the vdims and the
values are 2D Numpy arrays with identical shapes (y, x). If the dictionary’s keys matches the kdims of the element, they need to be 1D arrays.
- A tuple containing (x, y, level_0, level_1, …),
where the level is a 2D Numpy array in the shape of (y, x).
An xarray DataArray or Dataset where its coords contain the kdims.
If no kdims are supplied, x and y are used.
If no vdims are supplied, and the naming can be inferred like with a dictionary the levels will be named level_0, level_1, etc.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.raster.Image
: kdims, datatype, bounds, rtolgroup = String(constant=True, default='ImageStack', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(1, None), default=[Dimension('z')], label='Vdims')
The dimension description of the data held in the matrix.
- class holoviews.ItemTable(data, **params)[source]#
Bases:
Element
A tabular element type to allow convenient visualization of either a standard Python dictionary or a list of tuples (i.e. input suitable for an dict constructor). Tables store heterogeneous data with different labels.
Dimension objects are also accepted as keys, allowing dimensional information (e.g. type and units) to be associated per heading.
- Attributes:
- cols
- rows
Methods
cell_type
(row, col)Returns the cell type given a row and column index.
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
hist
(*args, **kwargs)Computes and adjoins histogram along specified dimension(s).
pprint_cell
(row, col)Get the formatted cell value for the given row and column indices.
reduce
([dimensions, function])Applies reduction along the specified dimension(s).
sample
([samples])Samples values at supplied coordinates.
Parameter Definitions
Parameters inherited from:
group = String(constant=True, default='ItemTable', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(0, 0), default=[], label='Kdims')
ItemTables hold an index Dimension for each value they contain, i.e. they are equivalent to the keys.
vdims = List(bounds=(0, None), default=[Dimension('Default')], label='Vdims')
ItemTables should have only index Dimensions.
- cell_type(row, col)[source]#
Returns the cell type given a row and column index. The common basic cell types are ‘data’ and ‘heading’.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- hist(*args, **kwargs)[source]#
Computes and adjoins histogram along specified dimension(s).
Defaults to first value dimension if present otherwise falls back to first key dimension.
- Parameters:
- Returns:
AdjointLayout
of
element
and
histogram
orjust
the
histogram
- reduce(dimensions=None, function=None, **reduce_map)[source]#
Applies reduction along the specified dimension(s).
Allows reducing the values along one or more key dimension with the supplied function. Supports two signatures:
Reducing with a list of dimensions, e.g.:
ds.reduce([‘x’], np.mean)
Defining a reduction using keywords, e.g.:
ds.reduce(x=np.mean)
- Parameters:
- dimensions
Dimension(s) to apply reduction on Defaults to all key dimensions
- function
Reduction operation to apply, e.g. numpy.mean
- spreadfn
Secondary reduction to compute value spread Useful for computing a confidence interval, spread, or standard deviation.
- **reductions
Keyword argument defining reduction Allows reduction to be defined as keyword pair of dimension and function
- Returns:
The
element
after
reductions
have
been
applied.
- sample(samples=None)[source]#
Samples values at supplied coordinates.
Allows sampling of element with a list of coordinates matching the key dimensions, returning a new object containing just the selected samples. Supports multiple signatures:
Sampling with a list of coordinates, e.g.:
ds.sample([(0, 0), (0.1, 0.2), …])
Sampling a range or grid of coordinates, e.g.:
1D : ds.sample(3) 2D : ds.sample((3, 3))
Sampling by keyword, e.g.:
ds.sample(x=0)
- Parameters:
- samples
List of nd-coordinates to sample
- bounds
Bounds of the region to sample Defined as two-tuple for 1D sampling and four-tuple for 2D sampling.
- closest
Whether to snap to closest coordinates
- **kwargs
Coordinates specified as keyword pairs Keywords of dimensions and scalar coordinates
- Returns:
Element
containing
the
sampled
coordinates
- class holoviews.Labels(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
Labels represents a collection of text labels associated with 2D coordinates. Unlike the Text annotation, Labels is a Dataset type which allows drawing vectorized labels from tabular or gridded data.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Labels', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), constant=True, default=[Dimension('x'), Dimension('y')], label='Kdims')
The label of the x- and y-dimension of the Labels element in form of a string or dimension object.
vdims = List(bounds=(1, None), default=[Dimension('Label')], label='Vdims')
Defines the value dimension corresponding to the label text.
- class holoviews.Layout(items=None, identifier=None, parent=None, **kwargs)[source]#
Bases:
Layoutable
,ViewableTree
A Layout is an ViewableTree with ViewableElement objects as leaf values.
Unlike ViewableTree, a Layout supports a rich display, displaying leaf items in a grid style layout. In addition to the usual ViewableTree indexing, Layout supports indexing of items by their row and column index in the layout.
The maximum number of columns in such a layout may be controlled with the cols method.
- Attributes:
shape
Tuple indicating the number of rows and columns in the Layout.
Methods
clone
(*args, **overrides)Clones the Layout, overriding data and parameters.
cols
(ncols)Sets the maximum number of columns in the NdLayout.
Packs Layout of DynamicMaps into a single DynamicMap that returns a Layout
relabel
([label, group, depth])Clone object and apply new group and/or label.
grid_items
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='Layout', label='Group')
A string describing the data wrapped by the object.
- cols(ncols)[source]#
Sets the maximum number of columns in the NdLayout.
Any items beyond the set number of cols will flow onto a new row. The number of columns control the indexing and display semantics of the NdLayout.
- Parameters:
- ncols
int
Number of columns to set on the NdLayout
- ncols
- decollate()[source]#
Packs Layout of DynamicMaps into a single DynamicMap that returns a Layout
Decollation allows packing a Layout of DynamicMaps into a single DynamicMap that returns a Layout of simple (non-dynamic) elements. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
a
Layout
- relabel(label=None, group=None, depth=1)[source]#
Clone object and apply new group and/or label.
Applies relabeling to children up to the supplied depth.
- Parameters:
- Returns:
Returns
relabelled
object
- property shape#
Tuple indicating the number of rows and columns in the Layout.
- class holoviews.NdLayout(initial_items=None, kdims=None, **params)[source]#
Bases:
Layoutable
,UniformNdMapping
NdLayout is a UniformNdMapping providing an n-dimensional data structure to display the contained Elements and containers in a layout. Using the cols method the NdLayout can be rearranged with the desired number of columns.
- Attributes:
Methods
clone
(*args, **overrides)Clones the NdLayout, overriding data and parameters.
cols
(ncols)Sets the maximum number of columns in the NdLayout.
Compute a dict of {(row,column): (key, value)} elements from the current set of items and specified number of columns.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.ndmapping.MultiDimensionalMapping
: kdims, vdims, sort- cols(ncols)[source]#
Sets the maximum number of columns in the NdLayout.
Any items beyond the set number of cols will flow onto a new row. The number of columns control the indexing and display semantics of the NdLayout.
- Parameters:
- ncols
int
Number of columns to set on the NdLayout
- ncols
- grid_items()[source]#
Compute a dict of {(row,column): (key, value)} elements from the current set of items and specified number of columns.
- property last#
Returns another NdLayout constituted of the last views of the individual elements (if they are maps).
- property shape#
Tuple indicating the number of rows and columns in the NdLayout.
- class holoviews.NdMapping(initial_items=None, kdims=None, **params)[source]#
Bases:
MultiDimensionalMapping
NdMapping supports the same indexing semantics as MultiDimensionalMapping but also supports slicing semantics.
Slicing semantics on an NdMapping is dependent on the ordering semantics of the keys. As MultiDimensionalMapping sort the keys, a slice on an NdMapping is effectively a way of filtering out the keys that are outside the slice range.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.ndmapping.MultiDimensionalMapping
: kdims, vdims, sortgroup = String(constant=True, default='NdMapping', label='Group')
A string describing the data wrapped by the object.
- class holoviews.NdOverlay(overlays=None, kdims=None, **params)[source]#
Bases:
Overlayable
,UniformNdMapping
,CompositeOverlay
An NdOverlay allows a group of NdOverlay to be overlaid together. NdOverlay can be indexed out of an overlay and an overlay is an iterable that iterates over the contained layers.
Methods
Packs NdOverlay of DynamicMaps into a single DynamicMap that returns an NdOverlay
Parameter Definitions
Parameters inherited from:
kdims = List(bounds=(0, None), constant=True, default=[Dimension('Element')], label='Kdims')
List of dimensions the NdOverlay can be indexed by.
- decollate()[source]#
Packs NdOverlay of DynamicMaps into a single DynamicMap that returns an NdOverlay
Decollation allows packing a NdOverlay of DynamicMaps into a single DynamicMap that returns an NdOverlay of simple (non-dynamic) elements. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
an
NdOverlay
- class holoviews.Nodes(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Points
Nodes is a simple Element representing Graph nodes as a set of Points. Unlike regular Points, Nodes must define a third key dimension corresponding to the node index.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Nodes', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(3, 3), default=[Dimension('x'), Dimension('y'), Dimension('index')], label='Kdims')
The key dimensions of a geometry represent the x- and y- coordinates in a 2D space.
- class holoviews.Operation(*, dynamic, group, input_ranges, link_inputs, streams, name)[source]#
Bases:
ParameterizedFunction
An Operation process an Element or HoloMap at the level of individual elements or overlays. If a holomap is passed in as input, a processed holomap is returned as output where the individual elements have been transformed accordingly. An Operation may turn overlays in new elements or vice versa.
An Operation can be set to be dynamic, which will return a DynamicMap with a callback that will apply the operation dynamically. An Operation may also supply a list of Stream classes on a streams parameter, which can allow dynamic control over the parameters on the operation.
Methods
get_overlay_bounds
(overlay)Returns the extents if all the elements of an overlay agree on a consistent extents, otherwise raises an exception.
get_overlay_label
(overlay[, default_label])Returns a label if all the elements of an overlay agree on a consistent label, otherwise returns the default label.
process_element
(element, key, **params)The process_element method allows a single element to be operated on given an externally supplied key.
search
(element, pattern)Helper method that returns a list of elements that match the given path pattern of form {type}.{group}.{label}.
Parameter Definitions
group = String(default='Operation', label='Group')
The group string used to identify the output of the Operation. By default this should match the operation name.
dynamic = Selector(default='default', label='Dynamic', names={}, objects=['default', True, False])
Whether the operation should be applied dynamically when a specific frame is requested, specified as a Boolean. If set to ‘default’ the mode will be determined based on the input type, i.e. if the data is a DynamicMap it will stay dynamic.
input_ranges = ClassSelector(allow_None=True, class_=(<class 'dict'>, <class 'tuple'>), default={}, label='Input ranges')
Ranges to be used for input normalization (if applicable) in a format appropriate for the Normalization.ranges parameter. By default, no normalization is applied. If key-wise normalization is required, a 2-tuple may be supplied where the first component is a Normalization.ranges list and the second component is Normalization.keys.
link_inputs = Boolean(default=False, label='Link inputs')
If the operation is dynamic, whether or not linked streams should be transferred from the operation inputs for backends that support linked streams. For example if an operation is applied to a DynamicMap with an RangeXY, this switch determines whether the corresponding visualization should update this stream with range changes originating from the newly generated axes.
streams = ClassSelector(class_=(<class 'dict'>, <class 'list'>), default=[], label='Streams')
List of streams that are applied if dynamic=True, allowing for dynamic interaction with the plot.
- classmethod get_overlay_bounds(overlay)[source]#
Returns the extents if all the elements of an overlay agree on a consistent extents, otherwise raises an exception.
- classmethod get_overlay_label(overlay, default_label='')[source]#
Returns a label if all the elements of an overlay agree on a consistent label, otherwise returns the default label.
- class holoviews.Options(key=None, allowed_keywords=None, merge_keywords=True, max_cycles=None, **kwargs)[source]#
Bases:
object
An Options object holds a collection of keyword options. In addition, Options support (optional) keyword validation as well as infinite indexing over the set of supplied cyclic values.
Options support inheritance of setting values via the __call__ method. By calling an Options object with additional keywords, you can create a new Options object inheriting the parent options.
- Attributes:
options
Access of the options keywords when no cycles are defined.
Methods
keys
()The keyword names across the supplied options.
- property cyclic#
Returns True if the options cycle, otherwise False
- filtered(allowed)[source]#
Return a new Options object that is filtered by the specified list of keys. Mutating self.kwargs to filter is unsafe due to the option expansion that occurs on initialization.
- keywords_target(target)[source]#
Helper method to easily set the target on the allowed_keywords Keywords.
- max_cycles(num)[source]#
Truncates all contained Palette objects to a maximum number of samples and returns a new Options object containing the truncated or resampled Palettes.
- property options#
Access of the options keywords when no cycles are defined.
- class holoviews.Overlay(items=None, group=None, label=None, **params)[source]#
Bases:
ViewableTree
,CompositeOverlay
,Layoutable
,Overlayable
An Overlay consists of multiple Elements (potentially of heterogeneous type) presented one on top each other with a particular z-ordering.
Overlays along with elements constitute the only valid leaf types of a Layout and in fact extend the Layout structure. Overlays are constructed using the * operator (building an identical structure to the + operator).
- Attributes:
ddims
The list of deep dimensions
- shape
Methods
clone
([data, shared_data, new_type, link])Clones the object, overriding data and parameters.
collate
()Collates any objects in the Overlay resolving any issues the recommended nesting structure.
Packs Overlay of DynamicMaps into a single DynamicMap that returns an Overlay
get
(identifier[, default])Get a layer in the Overlay.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdims- clone(data=None, shared_data=True, new_type=None, link=True, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- collate()[source]#
Collates any objects in the Overlay resolving any issues the recommended nesting structure.
- property ddims#
The list of deep dimensions
- decollate()[source]#
Packs Overlay of DynamicMaps into a single DynamicMap that returns an Overlay
Decollation allows packing an Overlay of DynamicMaps into a single DynamicMap that returns an Overlay of simple (non-dynamic) elements. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
an
Overlay
- get(identifier, default=None)[source]#
Get a layer in the Overlay.
Get a particular layer in the Overlay using its path string or an integer index.
- Parameters:
- identifier
Index or path string of the item to return
- default
Value to return if no item is found
- Returns:
The
indexed
layer
of
the
Overlay
- property group#
str(object=’’) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to ‘strict’.
- property label#
str(object=’’) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to ‘strict’.
- class holoviews.Palette(key, **params)[source]#
Bases:
Cycle
Palettes allow easy specifying a discrete sampling of an existing colormap. Palettes may be supplied a key to look up a function function in the colormap class attribute. The function should accept a float scalar in the specified range and return a RGB(A) tuple. The number of samples may also be specified as a parameter.
The range and samples may conveniently be overridden with the __getitem__ method.
Parameter Definitions
Parameters inherited from:
holoviews.core.options.Cycle
: valueskey = String(default='grayscale', label='Key')
Palettes look up the Palette values based on some key.
range = NumericTuple(default=(0, 1), label='Range', length=2)
The range from which the Palette values are sampled.
samples = Integer(default=32, inclusive_bounds=(True, True), label='Samples')
The number of samples in the given range to supply to the sample_fn.
sample_fn = Callable(default=<function linspace at 0x108815b70>, label='Sample fn')
The function to generate the samples, by default linear.
reverse = Boolean(default=False, label='Reverse')
Whether to reverse the palette.
- sample_fn(stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, *, device=None)[source]#
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Changed in version 1.20.0: Values are rounded towards
-inf
instead of0
when an integerdtype
is specified. The old behavior can still be obtained withnp.linspace(start, stop, num).astype(int)
- Parameters:
- startarray_like
The starting value of the sequence.
- stoparray_like
The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of
num + 1
evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False.- num
int
,optional
Number of samples to generate. Default is 50. Must be non-negative.
- endpointbool,
optional
If True, stop is the last sample. Otherwise, it is not included. Default is True.
- retstepbool,
optional
If True, return (samples, step), where step is the spacing between samples.
- dtype
dtype
,optional
The type of the output array. If dtype is not given, the data type is inferred from start and stop. The inferred dtype will never be an integer; float is chosen even if the arguments would produce an array of integers.
- axis
int
,optional
The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
- device
str
,optional
The device on which to place the created array. Default: None. For Array-API interoperability only, so must be
"cpu"
if passed.Added in version 2.0.0.
- Returns:
See also
arange
Similar to linspace, but uses a step size (instead of the number of samples).
geomspace
Similar to linspace, but with numbers spaced evenly on a log scale (a geometric progression).
logspace
Similar to geomspace, but with the end points specified as logarithms.
- How to create arrays with regularly-spaced values
Examples
>>> import numpy as np >>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()
- class holoviews.Path(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
SelectionPolyExpr
,Geometry
The Path element represents one or more of path geometries with associated values. Each path geometry may be split into sub-geometries on NaN-values and may be associated with scalar values or array values varying along its length. In analogy to GEOS geometry types a Path is a collection of LineString and MultiLineString geometries with associated values.
Like all other elements a Path may be defined through an extensible list of interfaces. Natively, HoloViews provides the MultiInterface which allows representing paths as lists of regular columnar data objects including arrays, dataframes and dictionaries of column arrays and scalars.
The canonical representation is a list of dictionaries storing the x- and y-coordinates along with any other values:
[{‘x’: 1d-array, ‘y’: 1d-array, ‘value’: scalar, ‘continuous’: 1d-array}, …]
Alternatively Path also supports a single columnar data-structure to specify an individual path:
{‘x’: 1d-array, ‘y’: 1d-array, ‘value’: scalar, ‘continuous’: 1d-array}
Both scalar values and values continuously varying along the geometries coordinates a Path may be used vary visual properties of the paths such as the color. Since not all formats allow storing scalar values as actual scalars, arrays that are the same length as the coordinates but have only one unique value are also considered scalar.
The easiest way of accessing the individual geometries is using the Path.split method, which returns each path geometry as a separate entity, while the other methods assume a flattened representation where all paths are separated by NaN values.
Methods
select
([selection_expr, selection_specs])Applies selection by dimension name
split
([start, end, datatype])The split method allows splitting a Path type into a list of subpaths of the same type.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdims, vdimsgroup = String(constant=True, default='Path', label='Group')
A string describing the data wrapped by the object.
datatype = List(bounds=(0, None), default=['multitabular', 'spatialpandas', 'dask_spatialpandas'], label='Datatype')
A priority list of the data types to be used for storage on the .data attribute. If the input supplied to the element constructor cannot be put into the requested format, the next format listed will be used until a suitable format is found (or the data fails to be understood).
- select(selection_expr=None, selection_specs=None, **selection)[source]#
Applies selection by dimension name
Applies a selection along the dimensions of the object using keyword arguments. The selection may be narrowed to certain objects using selection_specs. For container objects the selection will be applied to all children as well.
Selections may select a specific value, slice or set of values:
- value: Scalar values will select rows along with an exact
match, e.g.:
ds.select(x=3)
- slice: Slices may be declared as tuples of the upper and
lower bound, e.g.:
ds.select(x=(0, 3))
- values: A list of values may be selected using a list or
set, e.g.:
ds.select(x=[0, 1, 2])
predicate expression: A holoviews.dim expression, e.g.:
from holoviews import dim ds.select(selection_expr=dim(‘x’) % 2 == 0)
- Parameters:
- selection_expr
holoviews.dim
predicate
expression
specifying selection.
- selection_specs
List
of
specs
to
match
on
A list of types, functions, or type[.group][.label] strings specifying which objects to apply the selection on.
- **selection: Dictionary declaring selections by dimension
Selections can be scalar values, tuple ranges, lists of discrete values and boolean arrays
- selection_expr
- Returns:
- class holoviews.Path3D(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
Path3D is a 3D element representing a line through 3D space. The key dimensions represent the position of each coordinate along the x-, y- and z-axis while the value dimensions can optionally supply additional information.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.element.path.Path
: datatypeholoviews.core.element.Element3D
: extentsgroup = String(constant=True, default='Path3D', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(3, 3), default=[Dimension('x'), Dimension('y'), Dimension('z')], label='Kdims')
The key dimensions of a geometry represent the x- and y- coordinates in a 2D space.
vdims = List(bounds=(0, None), default=[], label='Vdims')
Path3D can have optional value dimensions.
- class holoviews.Points(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,Geometry
Points represents a set of coordinates in 2D space, which may optionally be associated with any number of value dimensions.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypeholoviews.element.geom.Geometry
: kdims, vdimsgroup = String(constant=True, default='Points', label='Group')
A string describing the data wrapped by the object.
- class holoviews.Polygons(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Contours
The Polygons element represents one or more polygon geometries with associated scalar values. Each polygon geometry may be split into sub-geometries on NaN-values and may be associated with scalar values. In analogy to GEOS geometry types a Polygons element is a collection of Polygon and MultiPolygon geometries. Polygon geometries are defined as a set of coordinates describing the exterior bounding ring and any number of interior holes.
Like all other elements a Polygons element may be defined through an extensible list of interfaces. Natively HoloViews provides the MultiInterface which allows representing paths as lists of regular columnar data objects including arrays, dataframes and dictionaries of column arrays and scalars.
The canonical representation is a list of dictionaries storing the x- and y-coordinates, a list-of-lists of arrays representing the holes, along with any other values:
[{‘x’: 1d-array, ‘y’: 1d-array, ‘holes’: list-of-lists-of-arrays, ‘value’: scalar}, …]
Alternatively Polygons also supports a single columnar data-structure to specify an individual polygon:
{‘x’: 1d-array, ‘y’: 1d-array, ‘holes’: list-of-lists-of-arrays, ‘value’: scalar}
The list-of-lists format of the holes corresponds to the potential for each coordinate array to be split into a multi-geometry through NaN-separators. Each sub-geometry separated by the NaNs therefore has an unambiguous mapping to a list of holes. If a (multi-)polygon has no holes, the ‘holes’ key may be omitted.
Any value dimensions stored on a Polygons geometry must be scalar, just like the Contours element. Since not all formats allow storing scalar values as actual scalars arrays which are the same length as the coordinates but have only one unique value are also considered scalar.
The easiest way of accessing the individual geometries is using the Polygons.split method, which returns each path geometry as a separate entity, while the other methods assume a flattened representation where all paths are separated by NaN values.
- Attributes:
has_holes
Detects whether any polygon in the Polygons element defines holes.
Methods
holes
()Returns a list-of-lists-of-lists of hole arrays.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.geom.Geometry
: kdimsholoviews.element.path.Path
: datatypegroup = String(constant=True, default='Polygons', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(0, None), default=[], label='Vdims')
Polygons optionally accept a value dimension, corresponding to the supplied value.
- property has_holes#
Detects whether any polygon in the Polygons element defines holes. Useful to avoid expanding Polygons unless necessary.
- holes()[source]#
Returns a list-of-lists-of-lists of hole arrays. The three levels of nesting reflects the structure of the polygons:
The first level of nesting corresponds to the list of geometries
The second level corresponds to each Polygon in a MultiPolygon
The third level of nesting allows for multiple holes per Polygon
- class holoviews.QuadMesh(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,Dataset
,Element2D
A QuadMesh represents 2D rectangular grid expressed as x- and y-coordinates defined as 1D or 2D arrays. Unlike the Image type a QuadMesh may be regularly or irregularly spaced and contain either bin edges or bin centers. If bin edges are supplied the shape of the x/y-coordinate arrays should be one greater than the shape of the value array.
The default interface expects data to be specified in the form:
QuadMesh((X, Y, Z))
where X and Y may be 1D or 2D arrays of the shape N(+1) and M(+1) respectively or N(+1)xM(+1) and the Z value array should be of shape NxM. Other gridded formats such as xarray are also supported if installed.
The grid orientation follows the standard matrix convention: An array Z with shape (nrows, ncolumns) is plotted with the column number as X and the row number as Y.
Methods
trimesh
()Converts a QuadMesh into a TriMesh.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='QuadMesh', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), constant=True, default=[Dimension('x'), Dimension('y')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
vdims = List(bounds=(1, None), default=[Dimension('z')], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- class holoviews.RGB(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Image
RGB represents a regularly spaced 2D grid of an underlying continuous space of RGB(A) (red, green, blue and alpha) color space values. The definition of the grid closely matches the semantics of an Image and in the simplest case the grid may be specified as a NxMx3 or NxMx4 array of values along with a bounds, but it may also be defined through explicit and regularly spaced x/y-coordinate arrays. The two most basic supported constructors of an RGB element therefore include:
RGB((X, Y, R, G, B))
where X is a 1D array of shape M, Y is a 1D array of shape N and R/G/B are 2D array of shape NxM, or equivalently:
RGB(Z, bounds=(x0, y0, x1, y1))
where Z is a 3D array of stacked R/G/B arrays with shape NxMx3/4 and the bounds define the (left, bottom, top, right) edges of the four corners of the grid. Other gridded formats which support declaring of explicit x/y-coordinate arrays such as xarray are also supported.
Note that the interpretation of the orientation changes depending on whether bounds or explicit coordinates are used.
- Attributes:
rgb
Returns the corresponding RGB element.
Methods
load_image
(filename[, height, array, ...])Load an image from a file and return an RGB element or array
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.element.raster.Image
: kdims, datatype, bounds, rtolgroup = String(constant=True, default='RGB', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(3, 4), default=[Dimension('R'), Dimension('G'), Dimension('B')], label='Vdims')
The dimension description of the data held in the matrix. If an alpha channel is supplied, the defined alpha_dimension is automatically appended to this list.
alpha_dimension = ClassSelector(class_=<class 'holoviews.core.dimension.Dimension'>, default=Dimension('A'), label='Alpha dimension')
The alpha dimension definition to add the value dimensions if an alpha channel is supplied.
- classmethod load_image(filename, height=1, array=False, bounds=None, bare=False, **kwargs)[source]#
Load an image from a file and return an RGB element or array
- Parameters:
- filename
Filename of the image to be loaded
- height
Determines the bounds of the image where the width is scaled relative to the aspect ratio of the image.
- array
Whether to return an array (rather than RGB default)
- bounds
Bounds for the returned RGB (overrides height)
- bare
Whether to hide the axes
- kwargs
Additional kwargs to the RGB constructor
- Returns:
- property rgb#
Returns the corresponding RGB element.
Other than the updating parameter definitions, this is the only change needed to implemented an arbitrary colorspace as a subclass of RGB.
- class holoviews.Raster(data, kdims=None, vdims=None, extents=None, **params)[source]#
Bases:
Element2D
Raster is a basic 2D element type for presenting either numpy or dask arrays as two dimensional raster images.
Arrays with a shape of (N,M) are valid inputs for Raster whereas subclasses of Raster (e.g. RGB) may also accept 3D arrays containing channel information.
Raster does not support slicing like the Image or RGB subclasses and the extents are in matrix coordinates if not explicitly specified.
- Attributes:
- depth
Methods
dimension_values
(dim[, expanded, flat])Return the values along the requested dimension.
range
(dim[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
reduce
([dimensions, function])Reduces the Raster using functions provided via the kwargs, where the keyword is the dimension to be reduced.
sample
([samples, bounds])Sample the Raster along one or both of its dimensions, returning a reduced dimensionality type, which is either a ItemTable, Curve or Scatter.
Parameter Definitions
Parameters inherited from:
group = String(constant=True, default='Raster', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), constant=True, default=[Dimension('x'), Dimension('y')], label='Kdims')
The label of the x- and y-dimension of the Raster in form of a string or dimension object.
vdims = List(bounds=(1, None), default=[Dimension('z')], label='Vdims')
The dimension description of the data held in the matrix.
- dimension_values(dim, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- range(dim, data_range=True, dimension_range=True)[source]#
Return the lower and upper bounds of values along dimension.
- reduce(dimensions=None, function=None, **reduce_map)[source]#
Reduces the Raster using functions provided via the kwargs, where the keyword is the dimension to be reduced. Optionally a label_prefix can be provided to prepend to the result Element label.
- sample(samples=None, bounds=None, **sample_values)[source]#
Sample the Raster along one or both of its dimensions, returning a reduced dimensionality type, which is either a ItemTable, Curve or Scatter. If two dimension samples and a new_xaxis is provided the sample will be the value of the sampled unit indexed by the value in the new_xaxis tuple.
- class holoviews.Rectangles(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
SelectionGeomExpr
,Geometry
Rectangles represent a collection of axis-aligned rectangles in 2D space.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Rectangles', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(4, 4), constant=True, default=[Dimension('x0'), Dimension('y0'), Dimension('x1'), Dimension('y1')], label='Kdims')
The key dimensions of the Rectangles element represent the bottom-left (x0, y0) and top right (x1, y1) coordinates of each box.
- class holoviews.Sankey(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Graph
Sankey is an acyclic, directed Graph type that represents the flow of some quantity between its nodes.
Methods
clone
([data, shared_data, new_type, link])Clones the object, overriding data and parameters.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Sankey', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(0, None), default=[Dimension('Value')], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- clone(data=None, shared_data=True, new_type=None, link=True, *args, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- class holoviews.Scatter(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Chart
Scatter is a Chart element representing a set of points in a 1D coordinate system where the key dimension maps to the points location along the x-axis while the first value dimension represents the location of the point along the y-axis.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypeholoviews.element.chart.Chart
: kdims, vdimsgroup = String(constant=True, default='Scatter', label='Group')
A string describing the data wrapped by the object.
- class holoviews.Scatter3D(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
Scatter3D is a 3D element representing the position of a collection of coordinates in a 3D space. The key dimensions represent the position of each coordinate along the x-, y- and z-axis.
Scatter3D is not available for the default Bokeh backend.
Examples
Matplotlib
import holoviews as hv from bokeh.sampledata.iris import flowers hv.extension("matplotlib") hv.Scatter3D( flowers, kdims=["sepal_length", "sepal_width", "petal_length"] ).opts( color="petal_width", alpha=0.7, size=5, cmap="fire", marker='^' )
Plotly
import holoviews as hv from bokeh.sampledata.iris import flowers hv.extension("plotly") hv.Scatter3D( flowers, kdims=["sepal_length", "sepal_width", "petal_length"] ).opts( color="petal_width", alpha=0.7, size=5, cmap="Portland", colorbar=True, marker="circle", )
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.data.Dataset
: datatypeholoviews.core.element.Element3D
: extentsgroup = String(constant=True, default='Scatter3D', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(3, 3), default=[Dimension('x'), Dimension('y'), Dimension('z')], label='Kdims')
The key dimensions of a geometry represent the x- and y- coordinates in a 2D space.
vdims = List(bounds=(0, None), default=[], label='Vdims')
Scatter3D can have optional value dimensions, which may be mapped onto color and size.
- class holoviews.Segments(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
SelectionGeomExpr
,Geometry
Segments represent a collection of lines in 2D space.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Segments', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(4, 4), constant=True, default=[Dimension('x0'), Dimension('y0'), Dimension('x1'), Dimension('y1')], label='Kdims')
Segments represent lines given by x- and y- coordinates in 2D space.
- class holoviews.Slope(slope, y_intercept, kdims=None, vdims=None, **params)[source]#
Bases:
Annotation
A line drawn with arbitrary slope and y-intercept
Methods
from_scatter
(element, **kwargs)Returns a Slope element given an element of x/y-coordinates
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.element.annotation.Annotation
: group, kdimsslope = Number(default=0, inclusive_bounds=(True, True), label='Slope')
y_intercept = Number(default=0, inclusive_bounds=(True, True), label='Y intercept')
- class holoviews.Spikes(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection1DExpr
,Chart
Spikes is a Chart element which represents a number of discrete spikes, events or observations in a 1D coordinate system. The key dimension therefore represents the position of each spike along the x-axis while the first value dimension, if defined, controls the height along the y-axis. It may therefore be used to visualize the distribution of discrete events, representing a rug plot, or to draw the strength some signal.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Spikes', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(1, 1), default=[Dimension('x')], label='Kdims')
The key dimension(s) of a Chart represent the independent variable(s).
vdims = List(bounds=(0, None), default=[], label='Vdims')
The value dimensions of the Chart, usually corresponding to a number of dependent variables.
- class holoviews.Spline(spline_points, **params)[source]#
Bases:
Annotation
Draw a spline using the given handle coordinates and handle codes. The constructor accepts a tuple in format (coords, codes).
Follows format of matplotlib spline definitions as used in matplotlib.path.Path with the following codes:
Path.STOP : 0
Path.MOVETO : 1
Path.LINETO : 2
Path.CURVE3 : 3
Path.CURVE4 : 4
Path.CLOSEPLOY: 79
Methods
clone
([data, shared_data, new_type])Clones the object, overriding data and parameters.
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='Spline', label='Group')
A string describing the data wrapped by the object.
- clone(data=None, shared_data=True, new_type=None, *args, **overrides)[source]#
Clones the object, overriding data and parameters.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.Spread(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
ErrorBars
Spread is a Chart element representing a spread of values or confidence band in a 1D coordinate system. The key dimension(s) corresponds to the location along the x-axis and the value dimensions define the location along the y-axis as well as the symmetric or asymmetric spread.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypeholoviews.element.chart.Chart
: kdimsholoviews.element.chart.ErrorBars
: vdims, horizontalgroup = String(constant=True, default='Spread', label='Group')
A string describing the quantity measured by the ErrorBars object.
- class holoviews.Store[source]#
Bases:
object
The Store is what links up HoloViews objects to their corresponding options and to the appropriate classes of the chosen backend (e.g. for rendering).
In addition, Store supports pickle operations that automatically pickle and unpickle the corresponding options for a HoloViews object.
Methods
info
(obj[, ansi, backend, visualization, ...])Show information about a particular object or component class including the applicable style and plot options.
options
- classmethod add_style_opts(component, new_options, backend=None)[source]#
Given a component such as an Element (e.g. Image, Curve) or a container (e.g. Layout) specify new style options to be accepted by the corresponding plotting class.
Note : This is supplied for advanced users who know which additional style keywords are appropriate for the corresponding plotting class.
- classmethod dump(obj, file, protocol=0)[source]#
Equivalent to pickle.dump except that the HoloViews option tree is saved appropriately.
- classmethod dumps(obj, protocol=0)[source]#
Equivalent to pickle.dumps except that the HoloViews option tree is saved appropriately.
- classmethod info(obj, ansi=True, backend='matplotlib', visualization=True, recursive=False, pattern=None, elements=None)[source]#
Show information about a particular object or component class including the applicable style and plot options. Returns None if the object is not parameterized.
- classmethod load(filename)[source]#
Equivalent to pickle.load except that the HoloViews trees is restored appropriately.
- classmethod loaded_backends()[source]#
Returns a list of the backends that have been loaded, based on the available OptionTrees.
- classmethod loads(pickle_string)[source]#
Equivalent to pickle.loads except that the HoloViews trees is restored appropriately.
- classmethod lookup(backend, obj)[source]#
Given an object, lookup the corresponding customized option tree if a single custom tree is applicable.
- output_settings[source]#
alias of
OutputSettings
- classmethod register(associations, backend, style_aliases=None)[source]#
Register the supplied dictionary of associations between elements and plotting classes to the specified backend.
- classmethod render(obj)[source]#
Using any display hooks that have been registered, render the object to a dictionary of MIME types and metadata information.
- classmethod set_current_backend(backend)[source]#
Use this method to set the backend to run the switch hooks
- class holoviews.StoreOptions[source]#
Bases:
object
A collection of utilities for advanced users for creating and setting customized option trees on the Store. Designed for use by either advanced users or the %opts line and cell magics which use this machinery.
This class also holds general classmethods for working with OptionTree instances: as OptionTrees are designed for attribute access it is best to minimize the number of methods implemented on that class and implement the necessary utilities on StoreOptions instead.
Lastly this class offers a means to record all OptionErrors generated by an option specification. This is used for validation purposes.
Methods
options
(obj[, options])Context-manager for temporarily setting options on an object (if options is None, no options will be set) .
- classmethod apply_customizations(spec, options)[source]#
Apply the given option specs to the supplied options tree.
- classmethod capture_ids(obj)[source]#
Given an object, capture a list of ids that can be restored using the restore_ids.
- classmethod create_custom_trees(obj, options=None, backend=None)[source]#
Returns the appropriate set of customized subtree clones for an object, suitable for merging with Store.custom_options (i.e with the ids appropriately offset). Note if an object has no integer ids a new OptionTree is built.
The id_mapping return value is a list mapping the ids that need to be matched as set to their new values.
- classmethod expand_compositor_keys(spec)[source]#
Expands compositor definition keys into {type}.{group} keys. For instance a compositor operation returning a group string ‘Image’ of element type RGB expands to ‘RGB.Image’.
- classmethod id_offset()[source]#
Compute an appropriate offset for future id values given the set of ids currently defined across backends.
- classmethod merge_options(groups, options=None, **kwargs)[source]#
Given a full options dictionary and options groups specified as a keywords, return the full set of merged options:
>>> options={'Curve':{'style':dict(color='b')}} >>> style={'Curve':{'linewidth':10 }} >>> merged = StoreOptions.merge_options(['style'], options, style=style) >>> sorted(merged['Curve']['style'].items()) [('color', 'b'), ('linewidth', 10)]
- classmethod options(obj, options=None, **kwargs)[source]#
Context-manager for temporarily setting options on an object (if options is None, no options will be set) . Once the context manager exits, both the object and the Store will be left in exactly the same state they were in before the context manager was used.
See holoviews.core.options.set_options function for more information on the options specification format.
- classmethod propagate_ids(obj, match_id, new_id, applied_keys, backend=None)[source]#
Recursively propagate an id through an object for components matching the applied_keys. This method can only be called if there is a tree with a matching id in Store.custom_options
- classmethod record_skipped_option(error)[source]#
Record the OptionError associated with a skipped option if currently recording
- classmethod restore_ids(obj, ids)[source]#
Given an list of ids as captured with capture_ids, restore the ids. Note the structure of an object must not change between the calls to capture_ids and restore_ids.
- classmethod set_options(obj, options=None, backend=None, **kwargs)[source]#
Pure Python function for customize HoloViews objects in terms of their style, plot and normalization options.
The options specification is a dictionary containing the target for customization as a {type}.{group}.{label} keys. An example of such a key is ‘Image’ which would customize all Image components in the object. The key ‘Image.Channel’ would only customize Images in the object that have the group ‘Channel’.
The corresponding value is then a list of Option objects specified with an appropriate category (‘plot’, ‘style’ or ‘norm’). For instance, using the keys described above, the specs could be:
{‘Image:[Options(‘style’, cmap=’jet’)]}
Or setting two types of option at once:
- {‘Image.Channel’:[Options(‘plot’, size=50),
Options(‘style’, cmap=’Blues’)]}
Notes
Relationship to the %%opts magic:
This function matches the functionality supplied by the %%opts cell magic in the IPython extension. In fact, you can use the same syntax as the IPython cell magic to achieve the same customization as shown above:
from holoviews.util.parser import OptsSpec set_options(my_image, OptsSpec.parse(“Image (cmap=’jet’)”))
Then setting both plot and style options:
set_options(my_image, OptsSpec.parse(“Image [size=50] (cmap=’Blues’)”))
- classmethod start_recording_skipped()[source]#
Start collecting OptionErrors for all skipped options recorded with the record_skipped_option method
- classmethod state(obj, state=None)[source]#
Method to capture and restore option state. When called without any state supplied, the current state is returned. Then if this state is supplied back in a later call using the same object, the original state is restored.
- classmethod stop_recording_skipped()[source]#
Stop collecting OptionErrors recorded with the record_skipped_option method and return them
- classmethod tree_to_dict(tree)[source]#
Given an OptionTree, convert it into the equivalent dictionary format.
- classmethod update_backends(id_mapping, custom_trees, backend=None)[source]#
Given the id_mapping from previous ids to new ids and the new custom tree dictionary, update the current backend with the supplied trees and update the keys in the remaining backends to stay linked with the current object.
- classmethod validate_spec(spec, backends=None)[source]#
Given a specification, validated it against the options tree for the specified backends by raising OptionError for invalid options. If backends is None, validates against all the currently loaded backend.
Only useful when invalid keywords generate exceptions instead of skipping, i.e. Options.skip_invalid is False.
- class holoviews.Surface(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
A Surface represents a regularly sampled 2D grid with associated values defining the height along the z-axis. The key dimensions of a Surface represent the 2D coordinates along the x- and y-axes while the value dimension declares the height at each grid location.
The data of a Surface is usually defined as a 2D array of values and either a bounds tuple defining the extent in the 2D space or explicit x- and y-coordinate arrays.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.element.raster.Image
: datatype, bounds, rtolgroup = String(constant=True, default='Surface', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('x'), Dimension('y')], label='Kdims')
The Surface x and y dimensions of the space defined by the supplied extent.
vdims = List(bounds=(1, 1), default=[Dimension('z')], label='Vdims')
The Surface height dimension.
extents = Tuple(default=(None, None, None, None, None, None), label='Extents', length=6)
Allows overriding the extents of the Element in 3D space defined as (xmin, ymin, zmin, xmax, ymax, zmax).
- class holoviews.Table(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
SelectionIndexExpr
,Dataset
,Tabular
Table is a Dataset type, which gets displayed in a tabular format and is convertible to most other Element types.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='Table', label='Group')
The group is used to describe the Table.
- class holoviews.Text(x, y, text, fontsize=12, halign='center', valign='center', rotation=0, **params)[source]#
Bases:
Annotation
Draw a text annotation at the specified position with custom fontsize, alignment and rotation.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='Text', label='Group')
A string describing the data wrapped by the object.
x = ClassSelector(class_=(<class 'numbers.Number'>, <class 'str'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='X')
The x-position of the arrow which make be numeric or a timestamp.
y = ClassSelector(class_=(<class 'numbers.Number'>, <class 'str'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='Y')
The y-position of the arrow which make be numeric or a timestamp.
text = String(default='', label='Text')
The text to be displayed.
fontsize = Number(default=12, inclusive_bounds=(True, True), label='Fontsize')
Font size of the text.
rotation = Number(default=0, inclusive_bounds=(True, True), label='Rotation')
Text rotation angle in degrees.
halign = Selector(default='center', label='Halign', names={}, objects=['left', 'right', 'center'])
The horizontal alignment position of the displayed text. Allowed values are ‘left’, ‘right’ and ‘center’.
valign = Selector(default='center', label='Valign', names={}, objects=['top', 'bottom', 'center'])
The vertical alignment position of the displayed text. Allowed values are ‘center’, ‘top’ and ‘bottom’.
- class holoviews.Tiles(data=None, kdims=None, vdims=None, **params)[source]#
Bases:
Element2D
The Tiles element represents tile sources, specified as URL containing different template variables or xyzservices.TileProvider. These variables correspond to three different formats for specifying the spatial location and zoom level of the requested tiles:
Web mapping tiles sources containing {x}, {y}, and {z} variables
Bounding box tile sources containing {XMIN}, {XMAX}, {YMIN}, {YMAX} variables
Quadkey tile sources containing a {Q} variable
Tiles are defined in a pseudo-Mercator projection (EPSG:3857) defined as eastings and northings. Any data overlaid on a tile source therefore has to be defined in those coordinates or be projected (e.g. using GeoViews).
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
easting_northing_to_lon_lat
(easting, northing)Projects the given easting, northing values into longitude, latitude coordinates.
lon_lat_to_easting_northing
(longitude, latitude)Projects the given longitude, latitude values into Web Mercator (aka Pseudo-Mercator or EPSG:3857) coordinates.
range
(dim[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='Tiles', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), constant=True, default=[Dimension('x'), Dimension('y')], label='Kdims')
The key dimensions of a geometry represent the x- and y- coordinates in a 2D space.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- static easting_northing_to_lon_lat(easting, northing)[source]#
Projects the given easting, northing values into longitude, latitude coordinates.
See docstring for holoviews.util.transform.easting_northing_to_lon_lat for more information
- static lon_lat_to_easting_northing(longitude, latitude)[source]#
Projects the given longitude, latitude values into Web Mercator (aka Pseudo-Mercator or EPSG:3857) coordinates.
See docstring for holoviews.util.transform.lon_lat_to_easting_northing for more information
- class holoviews.TriMesh(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Graph
A TriMesh represents a mesh of triangles represented as the simplices and nodes. The simplices represent a indices into the nodes array. The mesh therefore follows a datastructure very similar to a graph, with the abstract connectivity between nodes stored on the TriMesh element itself, the node positions stored on a Nodes element and the concrete paths making up each triangle generated when required by accessing the edgepaths.
Unlike a Graph each simplex is represented as the node indices of the three corners of each triangle.
- Attributes:
edgepaths
Returns the EdgePaths by generating a triangle for each simplex.
Methods
from_vertices
(data)Uses Delauney triangulation to compute triangle simplices for each point.
alias of
Points
select
([selection_expr, selection_specs])Allows selecting data by the slices, sets and scalar values along a particular dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='TriMesh', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(3, 3), default=['node1', 'node2', 'node3'], label='Kdims')
Dimensions declaring the node indices of each triangle.
- property edgepaths#
Returns the EdgePaths by generating a triangle for each simplex.
- classmethod from_vertices(data)[source]#
Uses Delauney triangulation to compute triangle simplices for each point.
- select(selection_expr=None, selection_specs=None, **selection)[source]#
Allows selecting data by the slices, sets and scalar values along a particular dimension. The indices should be supplied as keywords mapping between the selected dimension and value. Additionally selection_specs (taking the form of a list of type.group.label strings, types or functions) may be supplied, which will ensure the selection is only applied if the specs match the selected object.
- class holoviews.TriSurface(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
TriSurface represents a set of coordinates in 3D space which define a surface via a triangulation algorithm (usually Delauney triangulation). They key dimensions of a TriSurface define the position of each point along the x-, y- and z-axes, while value dimensions can provide additional information about each point.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.data.Dataset
: datatypeholoviews.core.element.Element3D
: extentsgroup = String(constant=True, default='TriSurface', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(3, 3), default=[Dimension('x'), Dimension('y'), Dimension('z')], label='Kdims')
The key dimensions of a TriSurface represent the 3D coordinates of each point.
vdims = List(bounds=(0, None), default=[], label='Vdims')
The value dimensions of a TriSurface can provide additional information about each 3D coordinate.
- class holoviews.VLine(x, **params)[source]#
Bases:
Annotation
Vertical line annotation at the given position.
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='VLine', label='Group')
A string describing the data wrapped by the object.
x = ClassSelector(class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='X')
The x-position of the VLine which make be numeric or a timestamp.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.VLines(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
VectorizedAnnotation
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='VLines', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(1, 1), default=[Dimension('x')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- class holoviews.VSpan(x1=None, x2=None, **params)[source]#
Bases:
Annotation
Vertical span annotation at the given position.
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsgroup = String(constant=True, default='VSpan', label='Group')
A string describing the data wrapped by the object.
x1 = ClassSelector(allow_None=True, class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='X1')
The start x-position of the VSpan which must be numeric or a timestamp.
x2 = ClassSelector(allow_None=True, class_=(<class 'numbers.Number'>, <class 'holoviews.core.util.types.datetime_types'>), default=0, label='X2')
The end x-position of the VSpan which must be numeric or a timestamp.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- class holoviews.VSpans(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
VectorizedAnnotation
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='VSpans', label='Group')
A string describing the data wrapped by the object.
kdims = List(bounds=(2, 2), default=[Dimension('x0'), Dimension('x1')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- class holoviews.VectorField(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
Selection2DExpr
,Geometry
A VectorField represents a set of vectors in 2D space with an associated angle, as well as an optional magnitude and any number of other value dimensions. The angles are assumed to be defined in radians and by default the magnitude is assumed to be normalized to be between 0 and 1.
Methods
from_uv
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypegroup = String(constant=True, default='VectorField', label='Group')
A string describing the data wrapped by the object.
vdims = List(bounds=(1, None), default=[Dimension('Angle'), Dimension('Magnitude')], label='Vdims')
Value dimensions can be associated with a geometry.
- class holoviews.VectorizedAnnotation(data=None, kdims=None, vdims=None, **kwargs)[source]#
-
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: group, datatype
- class holoviews.Violin(data=None, kdims=None, vdims=None, **kwargs)[source]#
Bases:
BoxWhisker
Violin elements represent data as 1D distributions visualized as a kernel-density estimate. It may have a single value dimension and any number of key dimensions declaring the grouping of each violin.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.element.Element2D
: extentsholoviews.core.data.Dataset
: datatypeholoviews.element.stats.BoxWhisker
: kdims, vdimsgroup = String(constant=True, default='Violin', label='Group')
A string describing the data wrapped by the object.
- class holoviews.annotate(*, annotations, annotator, edit_vertices, empty_value, num_objects, show_vertices, table_opts, table_transforms, vertex_annotations, vertex_style, name)[source]#
Bases:
ParameterizedFunction
The annotate function allows drawing, editing and annotating any given Element (if it is supported). The annotate function returns a Layout of the editable plot and an Overlay of table(s), which allow editing the data of the element. The edited and annotated data may be accessed using the element and selected properties.
- Attributes:
- annotated
- selected
Methods
compose
(*annotators)Composes multiple annotator layouts and elements
Parameter Definitions
annotator = Parameter(allow_None=True, label='Annotator')
The current Annotator instance.
annotations = ClassSelector(class_=(<class 'dict'>, <class 'list'>), default=[], label='Annotations')
Annotations to associate with each object.
edit_vertices = Boolean(default=True, label='Edit vertices')
Whether to add tool to edit vertices.
empty_value = Parameter(allow_None=True, label='Empty value')
The value to insert on annotation columns when drawing a new element.
num_objects = Integer(allow_None=True, bounds=(0, None), inclusive_bounds=(True, True), label='Num objects')
The maximum number of objects to draw.
show_vertices = Boolean(default=True, label='Show vertices')
Whether to show vertices when drawing the Path.
table_transforms = HookList(bounds=(0, None), default=[], label='Table transforms')
Transform(s) to apply to element when converting data to Table. The functions should accept the Annotator and the transformed element as input.
table_opts = Dict(class_=<class 'dict'>, default={'editable': True, 'width': 400}, label='Table opts')
Opts to apply to the editor table(s).
vertex_annotations = ClassSelector(class_=(<class 'dict'>, <class 'list'>), default=[], label='Vertex annotations')
Columns to annotate the Polygons with.
vertex_style = Dict(class_=<class 'dict'>, default={'nonselection_alpha': 0.5}, label='Vertex style')
Options to apply to vertices during drawing and editing.
- classmethod compose(*annotators)[source]#
Composes multiple annotator layouts and elements
The composed Layout will contain all the elements in the supplied annotators and an overlay of all editor tables.
- Parameters:
- annotators
Annotator layouts or elements to compose
- Returns:
A
new
layout
consisting
of
the
overlaid
plots
and
tables
- class holoviews.dim(obj, *args, **kwargs)[source]#
Bases:
object
dim transform objects are a way to express deferred transforms on Datasets. dim transforms support all mathematical and bitwise operators, NumPy ufuncs and methods, and provide a number of useful methods for normalizing, binning and categorizing data.
- Attributes:
- iloc
Methods
apply
(dataset[, flat, expanded, ranges, ...])Evaluates the transform on the supplied dataset.
clone
([dimension, ops, dim_type])Creates a clone of the dim expression optionally overriding the dim and ops.
- applies(dataset, strict=False)[source]#
Determines whether the dim transform can be applied to the Dataset, i.e. whether all referenced dimensions can be resolved.
- apply(dataset, flat=False, expanded=None, ranges=None, all_values=False, keep_index=False, compute=True, strict=False)[source]#
Evaluates the transform on the supplied dataset.
- Parameters:
- dataset
Dataset object to evaluate the expression on
- flat
Whether to flatten the returned array
- expanded
Whether to use the expanded expand values
- ranges
Dictionary for ranges for normalization
- all_values
Whether to evaluate on all values Whether to evaluate on all available values, for some element types, such as Graphs, this may include values not included in the referenced column
- keep_index
For data types that support indexes, whether the index should be preserved in the result.
- compute
For data types that support lazy evaluation, whether the result should be computed before it is returned.
- strict
Whether to strictly check for dimension matches (if False, counts any dimensions with matching names as the same)
- Returns:
values
NumPy array computed by evaluating the expression
- bin(bins, labels=None)[source]#
Bins continuous values.
Bins continuous using the provided bins and assigns labels either computed from each bins center point or from the supplied labels.
- categorize(categories, default=None)[source]#
Replaces discrete values with supplied categories
Replaces discrete values in input array into a fixed set of categories defined either as a list or dictionary.
- Parameters:
- categories
List or dict of categories to map inputs to
- default
Default value to assign if value not in categories
- clone(dimension=None, ops=None, dim_type=None)[source]#
Creates a clone of the dim expression optionally overriding the dim and ops.
- lognorm(limits=None)[source]#
- Unity-based normalization log scale.
Apply the same transformation as matplotlib.colors.LogNorm
- Parameters:
- limits
tuple of (min, max) defining the normalization range
- norm(limits=None)[source]#
Unity-based normalization to scale data into 0-1 range.
(values - min) / (max - min)
- Parameters:
- limits
tuple of (min, max) defining the normalization range
- classmethod pipe(func, *args, **kwargs)[source]#
Wrapper to give multidimensional transforms a more intuitive syntax. For a custom function func with signature (*args, **kwargs), call as dim.pipe(func, *args, **kwargs).
- classmethod register(key, function)[source]#
Register a custom dim transform function which can from then on be referenced by the key.
- property str#
Casts values to strings or provides str accessor.
- class holoviews.extension(*, name)[source]#
Bases:
extension
Helper utility used to load holoviews extensions. These can be plotting extensions, element extensions or anything else that can be registered to work with HoloViews.
The plotting extension is the most commonly used and is used to select the plotting backend. The plotting extension can be loaded using the backend name, e.g. ‘bokeh’, ‘matplotlib’ or ‘plotly’.
Methods
register_backend_callback
(backend, callback)Registers a hook which is run when a backend is loaded
Examples
Activate the bokeh plotting extension:
`python import holoviews as hv hv.extension("bokeh") `
Parameter Definitions
- holoviews.help(obj, visualization=True, ansi=True, backend=None, recursive=False, pattern=None)[source]#
Extended version of the built-in help that supports parameterized functions and objects. A pattern (regular expression) may be used to filter the output and if recursive is set to True, documentation for the supplied object is shown. Note that the recursive option will only work with an object instance and not a class.
If
ansi
is set to False, all ANSI color codes are stripped out.
- class holoviews.link_selections(*, cross_filter_mode, index_cols, selected_color, selection_expr, selection_mode, unselected_alpha, unselected_color, link_inputs, show_regions, name)[source]#
Bases:
_base_link_selections
Operation which automatically links selections between elements in the supplied HoloViews object. Can be used a single time or be used as an instance to apply the linked selections across multiple objects.
- Attributes:
selected_cmap
The datashader colormap for selected data
unselected_cmap
The datashader colormap for unselected data
Methods
filter
(data[, selection_expr])Filters the provided data based on the current state of the current selection expression.
instance
(**params)Return an instance of this class, copying parameters from any existing instance provided.
selection_param
(data)Returns a parameter which reflects the current selection when applied to the supplied data, making it easy to create a callback which depends on the current selection.
Parameter Definitions
Parameters inherited from:
holoviews.selection._base_link_selections
: link_inputs, show_regionscross_filter_mode = Selector(default='intersect', label='Cross filter mode', names={}, objects=['overwrite', 'intersect'])
Determines how to combine selections across different elements.
index_cols = List(allow_None=True, bounds=(0, None), label='Index cols')
If provided, selection switches to index mode where all queries are expressed solely in terms of discrete values along the index_cols. All Elements given to link_selections must define the index_cols, either as explicit dimensions or by sharing an underlying Dataset that defines them.
selection_expr = Parameter(allow_None=True, label='Selection expr')
dim expression of the current selection or None to indicate that everything is selected.
selected_color = Color(allow_None=True, allow_named=True, label='Selected color')
Color of selected data, or None to use the original color of each element.
selection_mode = Selector(default='overwrite', label='Selection mode', names={}, objects=['overwrite', 'intersect', 'union', 'inverse'])
Determines how to combine successive selections on the same element.
unselected_alpha = Magnitude(bounds=(0.0, 1.0), default=0.1, inclusive_bounds=(True, True), label='Unselected alpha')
Alpha of unselected data.
unselected_color = Color(allow_None=True, allow_named=True, label='Unselected color')
Color of unselected data.
- filter(data, selection_expr=None)[source]#
Filters the provided data based on the current state of the current selection expression.
- Parameters:
- data
A Dataset type or data which can be cast to a Dataset
- selection_expr
Optionally provide your own selection expression
- Returns:
The
filtered
data
- instance(**params)[source]#
Return an instance of this class, copying parameters from any existing instance provided.
- property selected_cmap#
The datashader colormap for selected data
- selection_param(data)[source]#
Returns a parameter which reflects the current selection when applied to the supplied data, making it easy to create a callback which depends on the current selection.
- Parameters:
- data
A Dataset type or data which can be cast to a Dataset
- Returns:
A
parameter
which
reflects
the
current
selection
- property unselected_cmap#
The datashader colormap for unselected data
- class holoviews.notebook_extension(*, name)[source]#
Bases:
ParameterizedFunction
Parameter Definitions
- class holoviews.opts(*args, **params)[source]#
Bases:
ParameterizedFunction
Utility function to set options at the global level or to provide an Options object that can be used with the .options method of an element or container.
Option objects can be generated and validated in a tab-completable way (in appropriate environments such as Jupyter notebooks) using completers such as opts.Curve, opts.Image, opts.Overlay, etc.
To set opts globally you can pass these option objects into opts.defaults:
opts.defaults(*options)
For instance:
opts.defaults(opts.Curve(color=’red’))
To set opts on a specific object, you can supply these option objects to the .options method.
For instance:
curve = hv.Curve([1,2,3]) curve.options(opts.Curve(color=’red’))
The options method also accepts lists of Option objects.
Methods
apply_groups
(obj[, options, backend, clone])Applies nested options definition grouped by type.
defaults
(*options, **kwargs)Set default options for a session.
AdjointLayout
Area
Bars
Bivariate
Bounds
Box
BoxWhisker
Curve
Distribution
Ellipse
ErrorBars
GridMatrix
GridSpace
HLine
HSpan
HeatMap
Histogram
Image
ImageStack
ItemTable
Labels
Layout
NdLayout
NdOverlay
Overlay
Path
Path3D
Points
QuadMesh
RGB
Raster
Rectangles
Scatter
Scatter3D
Segments
Spread
Surface
Table
Tiles
TriSurface
VLine
VSpan
Violin
Parameter Definitions
strict = Boolean(default=False, label='Strict')
Whether to be strict about the options specification. If not set to strict (default), any invalid keywords are simply skipped. If strict, invalid keywords prevent the options being applied.
- classmethod apply_groups(obj, options=None, backend=None, clone=True, **kwargs)[source]#
Applies nested options definition grouped by type.
Applies options on an object or nested group of objects, returning a new object with the options applied. This method accepts the separate option namespaces explicitly (i.e. ‘plot’, ‘style’, and ‘norm’).
If the options are to be set directly on the object a simple format may be used, e.g.:
- opts.apply_groups(obj, style={‘cmap’: ‘viridis’},
plot={‘show_title’: False})
If the object is nested the options must be qualified using a type[.group][.label] specification, e.g.:
- opts.apply_groups(obj, {‘Image’: {‘plot’: {‘show_title’: False},
‘style’: {‘cmap’: ‘viridis}}})
If no opts are supplied all options on the object will be reset.
- Parameters:
- options
dict
Options specification Options specification should be indexed by type[.group][.label] or option type (‘plot’, ‘style’, ‘norm’).
- backend
optional
Backend to apply options to Defaults to current selected backend
- clonebool,
optional
Whether to clone object Options can be applied inplace with clone=False
- **kwargs: Keywords of options by type
Applies options directly to the object by type (e.g. ‘plot’, ‘style’, ‘norm’) specified as dictionaries.
- options
- Returns:
Returns
the
object
ora
clone
with
the
options
applied
- class holoviews.output(*args, **params)[source]#
Bases:
ParameterizedFunction
Helper used to set HoloViews display options. Arguments are supplied as a series of keywords in any order:
backend : The backend used by HoloViews fig : The static figure format holomap : The display type for holomaps widgets : The widget mode for widgets fps : The frames per second used for animations max_frames : The max number of frames rendered (default 500) size : The percentage size of displayed output dpi : The rendered dpi of the figure filename : The filename of the saved output, if any (default None) info : The information to page about the displayed objects (default False) css : Optional css style attributes to apply to the figure image tag widget_location : The position of the widgets relative to the plot
Methods
info
Parameter Definitions
- holoviews.render(obj, backend=None, **kwargs)[source]#
Renders the HoloViews object to the corresponding object in the specified backend, e.g. a Matplotlib or Bokeh figure.
The backend defaults to the currently declared default backend. The resulting object can then be used with other objects in the specified backend. For instance, if you want to make a multi-part Bokeh figure using a plot type only available in HoloViews, you can use this function to return a Bokeh figure that you can use like any hand-constructed Bokeh figure in a Bokeh layout.
- Parameters:
- Returns:
rendered
The rendered representation of the HoloViews object, e.g. if backend=’matplotlib’ a matplotlib Figure or FuncAnimation
- holoviews.renderer(name)[source]#
Helper utility to access the active renderer for a given extension.
- holoviews.save(obj, filename, fmt='auto', backend=None, resources='cdn', toolbar=None, title=None, **kwargs)[source]#
Saves the supplied object to file.
The available output formats depend on the backend being used. By default and if the filename is a string the output format will be inferred from the file extension. Otherwise an explicit format will need to be specified. For ambiguous file extensions such as html it may be necessary to specify an explicit fmt to override the default, e.g. in the case of ‘html’ output the widgets will default to fmt=’widgets’, which may be changed to scrubber widgets using fmt=’scrubber’.
- Parameters:
- obj
HoloViews
object
The HoloViews object to save to file
- filename
str
orIO
object
The filename or BytesIO/StringIO object to save to
- fmt
str
The format to save the object as, e.g. png, svg, html, or gif and if widgets are desired either ‘widgets’ or ‘scrubber’
- backend
str
A valid HoloViews rendering backend, e.g. bokeh or matplotlib
- resources
str
orbokeh.resource.Resources
Bokeh resources used to load bokehJS components. Defaults to CDN, to embed resources inline for offline usage use ‘inline’ or bokeh.resources.INLINE.
- toolbarbool or
None
Whether to include toolbars in the exported plot. If None, display the toolbar unless fmt is png and backend is bokeh. If True, always include the toolbar. If False, do not include the toolbar.
- title
str
Custom title for exported HTML file
- **kwargs: dict
Additional keyword arguments passed to the renderer, e.g. fps for animations
- obj