holoviews.core.layout module#
Supplies Pane, Layout, NdLayout and AdjointLayout. Pane extends View to allow multiple Views to be presented side-by-side in a NdLayout. An AdjointLayout allows one or two Views to be adjoined to a primary View to act as supplementary elements.
- class holoviews.core.layout.AdjointLayout(data, **params)[source]#
Bases:
Layoutable
,Dimensioned
An AdjointLayout provides a convenient container to lay out some marginal plots next to a primary plot. This is often useful to display the marginal distributions of a plot next to the primary plot. AdjointLayout accepts a list of up to three elements, which are laid out as follows with the names ‘main’, ‘top’ and ‘right’:
________________ | 3 | | |___________|___| | | | 1: main | | | 2: right | 1 | 2 | 3: top | | | |___________|___|
- Attributes:
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
get
(key[, default])Returns the viewable corresponding to the supplied string or integer based key.
relabel
([label, group, depth])Clone object and apply new group and/or label.
items
keys
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: group, cdims, vdimskdims = List(bounds=(0, None), constant=True, default=[Dimension('AdjointLayout')], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
- property ddims#
The list of deep dimensions
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- get(key, default=None)[source]#
Returns the viewable corresponding to the supplied string or integer based key.
- Parameters:
- key
Numeric
orstr
index
0: ‘main’
1: ‘right’
2: ‘top’
- default
Value returned if key not found
- key
- Returns:
Indexed
value
orsupplied
default
- property group#
Group inherited from main element
- property label#
Label inherited from main element
- property main#
Returns the main element in the AdjointLayout
- relabel(label=None, group=None, depth=1)[source]#
Clone object and apply new group and/or label.
Applies relabeling to child up to the supplied depth.
- Parameters:
- Returns:
Returns
relabelled
object
- property right#
Returns the right marginal element in the AdjointLayout
- property top#
Returns the top marginal element in the AdjointLayout
- class holoviews.core.layout.Dimensioned(data, kdims=None, vdims=None, **params)[source]#
Bases:
LabelledData
Dimensioned is a base class that allows the data contents of a class to be associated with dimensions. The contents associated with dimensions may be partitioned into one of three types:
- key dimensions
These are the dimensions that can be indexed via the __getitem__ method. Dimension objects supporting key dimensions must support indexing over these dimensions and may also support slicing. This list ordering of dimensions describes the positional components of each multi-dimensional indexing operation.
For instance, if the key dimension names are ‘weight’ followed by ‘height’ for Dimensioned object ‘obj’, then obj[80,175] indexes a weight of 80 and height of 175.
Accessed using either kdims.
- value dimensions
These dimensions correspond to any data held on the Dimensioned object not in the key dimensions. Indexing by value dimension is supported by dimension name (when there are multiple possible value dimensions); no slicing semantics is supported and all the data associated with that dimension will be returned at once. Note that it is not possible to mix value dimensions and deep dimensions.
Accessed using either vdims.
- deep dimensions
These are dynamically computed dimensions that belong to other Dimensioned objects that are nested in the data. Objects that support this should enable the _deep_indexable flag. Note that it is not possible to mix value dimensions and deep dimensions.
Accessed using either ddims.
Dimensioned class support generalized methods for finding the range and type of values along a particular Dimension. The range method relies on the appropriate implementation of the dimension_values methods on subclasses.
The index of an arbitrary dimension is its positional index in the list of all dimensions, starting with the key dimensions, followed by the value dimensions and ending with the deep dimensions.
- Attributes:
- apply
ddims
The list of deep dimensions
- opts
- redim
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
dimensions
([selection, label])Lists the available dimensions on the object
get_dimension
(dimension[, default, strict])Get a Dimension object by name or index.
get_dimension_index
(dimension)Get the index of the requested dimension.
get_dimension_type
(dim)Get the type of the requested dimension.
options
(*args[, clone])Applies simplified option definition returning a new object.
range
(dimension[, data_range, dimension_range])Return the lower and upper bounds of values along dimension.
select
([selection_specs])Applies selection by dimension name
Parameter Definitions
Parameters inherited from:
group = String(constant=True, default='Dimensioned', label='Group')
A string describing the data wrapped by the object.
cdims = Dict(class_=<class 'dict'>, default={}, label='Cdims')
The constant dimensions defined as a dictionary of Dimension:value pairs providing additional dimension information about the object. Aliased with constant_dimensions.
kdims = List(bounds=(0, None), constant=True, default=[], label='Kdims')
The key dimensions defined as list of dimensions that may be used in indexing (and potential slicing) semantics. The order of the dimensions listed here determines the semantics of each component of a multi-dimensional indexing operation. Aliased with key_dimensions.
vdims = List(bounds=(0, None), constant=True, default=[], label='Vdims')
The value dimensions defined as the list of dimensions used to describe the components of the data. If multiple value dimensions are supplied, a particular value dimension may be indexed by name after the key dimensions. Aliased with value_dimensions.
- property ddims#
The list of deep dimensions
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- dimensions(selection='all', label=False)[source]#
Lists the available dimensions on the object
Provides convenient access to Dimensions on nested Dimensioned objects. Dimensions can be selected by their type, i.e. ‘key’ or ‘value’ dimensions. By default ‘all’ dimensions are returned.
- Parameters:
- selection
Type
of
dimensions
to
return
The type of dimension, i.e. one of ‘key’, ‘value’, ‘constant’ or ‘all’.
- label
Whether
to
return
the
name
,label
orDimension
Whether to return the Dimension objects (False), the Dimension names (True/’name’) or labels (‘label’).
- selection
- Returns:
List
of
Dimension
objects
ortheir
names
orlabels
- get_dimension(dimension, default=None, strict=False) Dimension | None [source]#
Get a Dimension object by name or index.
- get_dimension_index(dimension)[source]#
Get the index of the requested dimension.
- Parameters:
- dimension
Dimension to look up by name or by index
- Returns:
Integer
index
of
the
requested
dimension
- get_dimension_type(dim)[source]#
Get the type of the requested dimension.
Type is determined by Dimension.type attribute or common type of the dimension values, otherwise None.
- Parameters:
- dimension
Dimension to look up by name or by index
- Returns:
Declared
type
of
values
along
the
dimension
- options(*args, clone=True, **kwargs)[source]#
Applies simplified option definition returning a new object.
Applies options on an object or nested group of objects in a flat format returning a new object with the options applied. If the options are to be set directly on the object a simple format may be used, e.g.:
obj.options(cmap=’viridis’, show_title=False)
If the object is nested the options must be qualified using a type[.group][.label] specification, e.g.:
obj.options(‘Image’, cmap=’viridis’, show_title=False)
or using:
obj.options({‘Image’: dict(cmap=’viridis’, show_title=False)})
Identical to the .opts method but returns a clone of the object by default.
- Parameters:
- *args: Sets of options to apply to object
Supports a number of formats including lists of Options objects, a type[.group][.label] followed by a set of keyword options to apply and a dictionary indexed by type[.group][.label] specs.
- backend
optional
Backend to apply options to Defaults to current selected backend
- clonebool,
optional
Whether to clone object Options can be applied inplace with clone=False
- **kwargs: Keywords of options
Set of options to apply to the object
- Returns:
- range(dimension, data_range=True, dimension_range=True)[source]#
Return the lower and upper bounds of values along dimension.
- select(selection_specs=None, **kwargs)[source]#
Applies selection by dimension name
Applies a selection along the dimensions of the object using keyword arguments. The selection may be narrowed to certain objects using selection_specs. For container objects the selection will be applied to all children as well.
Selections may select a specific value, slice or set of values:
- value
Scalar values will select rows along with an exact match, e.g.:
ds.select(x=3)
- slice
Slices may be declared as tuples of the upper and lower bound, e.g.:
ds.select(x=(0, 3))
- values
A list of values may be selected using a list or set, e.g.:
ds.select(x=[0, 1, 2])
- Parameters:
- selection_specs
List
of
specs
to
match
on
A list of types, functions, or type[.group][.label] strings specifying which objects to apply the selection on.
- **selection: Dictionary declaring selections by dimension
Selections can be scalar values, tuple ranges, lists of discrete values and boolean arrays
- selection_specs
- Returns:
Returns
an
Dimensioned
object
containing
the
selected
data
or
a
scalarif
a
single
value
was
selected
- class holoviews.core.layout.Empty(*, cdims, kdims, vdims, group, label, name)[source]#
Bases:
Dimensioned
,Composable
Empty may be used to define an empty placeholder in a Layout. It can be placed in a Layout just like any regular Element and container type via the + operator or by passing it to the Layout constructor as a part of a list.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(default='Empty', label='Group')
A string describing the data wrapped by the object.
- class holoviews.core.layout.Layout(items=None, identifier=None, parent=None, **kwargs)[source]#
Bases:
Layoutable
,ViewableTree
A Layout is an ViewableTree with ViewableElement objects as leaf values.
Unlike ViewableTree, a Layout supports a rich display, displaying leaf items in a grid style layout. In addition to the usual ViewableTree indexing, Layout supports indexing of items by their row and column index in the layout.
The maximum number of columns in such a layout may be controlled with the cols method.
- Attributes:
shape
Tuple indicating the number of rows and columns in the Layout.
Methods
clone
(*args, **overrides)Clones the Layout, overriding data and parameters.
cols
(ncols)Sets the maximum number of columns in the NdLayout.
Packs Layout of DynamicMaps into a single DynamicMap that returns a Layout
relabel
([label, group, depth])Clone object and apply new group and/or label.
grid_items
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='Layout', label='Group')
A string describing the data wrapped by the object.
- cols(ncols)[source]#
Sets the maximum number of columns in the NdLayout.
Any items beyond the set number of cols will flow onto a new row. The number of columns control the indexing and display semantics of the NdLayout.
- Parameters:
- ncols
int
Number of columns to set on the NdLayout
- ncols
- decollate()[source]#
Packs Layout of DynamicMaps into a single DynamicMap that returns a Layout
Decollation allows packing a Layout of DynamicMaps into a single DynamicMap that returns a Layout of simple (non-dynamic) elements. All nested streams are lifted to the resulting DynamicMap, and are available in the streams property. The callback property of the resulting DynamicMap is a pure, stateless function of the stream values. To avoid stream parameter name conflicts, the resulting DynamicMap is configured with positional_stream_args=True, and the callback function accepts stream values as positional dict arguments.
- Returns:
DynamicMap
that
returns
a
Layout
- relabel(label=None, group=None, depth=1)[source]#
Clone object and apply new group and/or label.
Applies relabeling to children up to the supplied depth.
- Parameters:
- Returns:
Returns
relabelled
object
- property shape#
Tuple indicating the number of rows and columns in the Layout.
- class holoviews.core.layout.NdLayout(initial_items=None, kdims=None, **params)[source]#
Bases:
Layoutable
,UniformNdMapping
NdLayout is a UniformNdMapping providing an n-dimensional data structure to display the contained Elements and containers in a layout. Using the cols method the NdLayout can be rearranged with the desired number of columns.
- Attributes:
Methods
clone
(*args, **overrides)Clones the NdLayout, overriding data and parameters.
cols
(ncols)Sets the maximum number of columns in the NdLayout.
Compute a dict of {(row,column): (key, value)} elements from the current set of items and specified number of columns.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.ndmapping.MultiDimensionalMapping
: kdims, vdims, sort- cols(ncols)[source]#
Sets the maximum number of columns in the NdLayout.
Any items beyond the set number of cols will flow onto a new row. The number of columns control the indexing and display semantics of the NdLayout.
- Parameters:
- ncols
int
Number of columns to set on the NdLayout
- ncols
- grid_items()[source]#
Compute a dict of {(row,column): (key, value)} elements from the current set of items and specified number of columns.
- property last#
Returns another NdLayout constituted of the last views of the individual elements (if they are maps).
- property shape#
Tuple indicating the number of rows and columns in the NdLayout.
- class holoviews.core.layout.NdMapping(initial_items=None, kdims=None, **params)[source]#
Bases:
MultiDimensionalMapping
NdMapping supports the same indexing semantics as MultiDimensionalMapping but also supports slicing semantics.
Slicing semantics on an NdMapping is dependent on the ordering semantics of the keys. As MultiDimensionalMapping sort the keys, a slice on an NdMapping is effectively a way of filtering out the keys that are outside the slice range.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.ndmapping.MultiDimensionalMapping
: kdims, vdims, sortgroup = String(constant=True, default='NdMapping', label='Group')
A string describing the data wrapped by the object.
- class holoviews.core.layout.UniformNdMapping(initial_items=None, kdims=None, group=None, label=None, **params)[source]#
Bases:
NdMapping
A UniformNdMapping is a map of Dimensioned objects and is itself indexed over a number of specified dimensions. The dimension may be a spatial dimension (i.e., a ZStack), time (specifying a frame sequence) or any other combination of Dimensions.
UniformNdMapping objects can be sliced, sampled, reduced, overlaid and split along its and its containing Element’s dimensions. Subclasses should implement the appropriate slicing, sampling and reduction methods for their Dimensioned type.
- Attributes:
- empty_element
type
The type of elements stored in the mapping.
Methods
clone
([data, shared_data, new_type, link])Clones the object, overriding data and parameters.
collapse
([dimensions, function, spreadfn])Concatenates and aggregates along supplied dimensions
dframe
([dimensions, multi_index])Convert dimension values to DataFrame.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdimsholoviews.core.ndmapping.MultiDimensionalMapping
: kdims, vdims, sort- clone(data=None, shared_data=True, new_type=None, link=True, *args, **overrides)[source]#
Clones the object, overriding data and parameters.
- Parameters:
- data
New data replacing the existing data
- shared_databool,
optional
Whether to use existing data
- new_type
optional
Type to cast object to
- linkbool,
optional
Whether clone should be linked Determines whether Streams and Links attached to original object will be inherited.
- *args
Additional arguments to pass to constructor
- **overrides
New keyword arguments to pass to constructor
- Returns:
Cloned
object
- collapse(dimensions=None, function=None, spreadfn=None, **kwargs)[source]#
Concatenates and aggregates along supplied dimensions
Useful to collapse stacks of objects into a single object, e.g. to average a stack of Images or Curves.
- Parameters:
- dimensions
Dimension(s) to collapse Defaults to all key dimensions
- function
Aggregation function to apply, e.g. numpy.mean
- spreadfn
Secondary reduction to compute value spread Useful for computing a confidence interval, spread, or standard deviation.
- **kwargs
Keyword arguments passed to the aggregation function
- Returns:
Returns
the
collapsed
element
orHoloMap
of
collapsed
elements
- dframe(dimensions=None, multi_index=False)[source]#
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension, either completely flat or indexed by key dimensions.
- Parameters:
- dimensions
Dimensions to return as columns
- multi_index
Convert key dimensions to (multi-)index
- Returns:
DataFrame
of
columns
corresponding
to
each
dimension
- property group#
Group inherited from items
- property label#
Label inherited from items
- property type#
The type of elements stored in the mapping.
- class holoviews.core.layout.ViewableElement(data, kdims=None, vdims=None, **params)[source]#
Bases:
Dimensioned
A ViewableElement is a dimensioned datastructure that may be associated with a corresponding atomic visualization. An atomic visualization will display the data on a single set of axes (i.e. excludes multiple subplots that are displayed at once). The only new parameter introduced by ViewableElement is the title associated with the object for display.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='ViewableElement', label='Group')
A string describing the data wrapped by the object.
- class holoviews.core.layout.ViewableTree(items=None, identifier=None, parent=None, **kwargs)[source]#
Bases:
AttrTree
,Dimensioned
A ViewableTree is an AttrTree with Viewable objects as its leaf nodes. It combines the tree like data structure of a tree while extending it with the deep indexable properties of Dimensioned and LabelledData objects.
- Attributes:
uniform
Whether items in tree have uniform dimensions
Methods
dimension_values
(dimension[, expanded, flat])Return the values along the requested dimension.
Parameter Definitions
Parameters inherited from:
holoviews.core.dimension.LabelledData
: labelholoviews.core.dimension.Dimensioned
: cdims, kdims, vdimsgroup = String(constant=True, default='ViewableTree', label='Group')
A string describing the data wrapped by the object.
- dimension_values(dimension, expanded=True, flat=True)[source]#
Return the values along the requested dimension.
- Parameters:
- dimension
str
The dimension to return values for.
- expandedbool,
optional
Whether to return the expanded values. Behavior depends on the type of data:
Columnar: If false, returns unique values
Geometry: If false, returns scalar values per geometry
Gridded: If false, returns 1D coordinates
- flatbool,
optional
Whether to flatten array.
- dimension
- Returns:
np.ndarray
Array of values along the requested dimension.
- property uniform#
Whether items in tree have uniform dimensions