Source code for holoviews.util.locator

"""
Minimal set of functionality of Matplotlib's MaxNLocator to choose contour
levels without having to have Matplotlib installed.
Taken from Matplotlib 3.8.0.
"""
import math

import numpy as np


class _Edge_integer:
    """
    Helper for `.MaxNLocator`, `.MultipleLocator`, etc.

    Take floating-point precision limitations into account when calculating
    tick locations as integer multiples of a step.
    """
    def __init__(self, step, offset):
        """
        Parameters
        ----------
        step : float > 0
            Interval between ticks.
        offset : float
            Offset subtracted from the data limits prior to calculating tick
            locations.
        """
        if step <= 0:
            raise ValueError("'step' must be positive")
        self.step = step
        self._offset = abs(offset)

    def closeto(self, ms, edge):
        # Allow more slop when the offset is large compared to the step.
        if self._offset > 0:
            digits = np.log10(self._offset / self.step)
            tol = max(1e-10, 10 ** (digits - 12))
            tol = min(0.4999, tol)
        else:
            tol = 1e-10
        return abs(ms - edge) < tol

    def le(self, x):
        """Return the largest n: n*step <= x."""
        d, m = divmod(x, self.step)
        if self.closeto(m / self.step, 1):
            return d + 1
        return d

    def ge(self, x):
        """Return the smallest n: n*step >= x."""
        d, m = divmod(x, self.step)
        if self.closeto(m / self.step, 0):
            return d
        return d + 1


[docs]def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True): """ Modify the endpoints of a range as needed to avoid singularities. Parameters ---------- vmin, vmax : float The initial endpoints. expander : float, default: 0.001 Fractional amount by which *vmin* and *vmax* are expanded if the original interval is too small, based on *tiny*. tiny : float, default: 1e-15 Threshold for the ratio of the interval to the maximum absolute value of its endpoints. If the interval is smaller than this, it will be expanded. This value should be around 1e-15 or larger; otherwise the interval will be approaching the double precision resolution limit. increasing : bool, default: True If True, swap *vmin*, *vmax* if *vmin* > *vmax*. Returns ------- vmin, vmax : float Endpoints, expanded and/or swapped if necessary. If either input is inf or NaN, or if both inputs are 0 or very close to zero, it returns -*expander*, *expander*. """ if (not np.isfinite(vmin)) or (not np.isfinite(vmax)): return -expander, expander swapped = False if vmax < vmin: vmin, vmax = vmax, vmin swapped = True # Expand vmin, vmax to float: if they were integer types, they can wrap # around in abs (abs(np.int8(-128)) == -128) and vmax - vmin can overflow. vmin, vmax = map(float, [vmin, vmax]) maxabsvalue = max(abs(vmin), abs(vmax)) if maxabsvalue < (1e6 / tiny) * np.finfo(float).tiny: vmin = -expander vmax = expander elif vmax - vmin <= maxabsvalue * tiny: if vmax == 0 and vmin == 0: vmin = -expander vmax = expander else: vmin -= expander*abs(vmin) vmax += expander*abs(vmax) if swapped and not increasing: vmin, vmax = vmax, vmin return vmin, vmax
def scale_range(vmin, vmax, n=1, threshold=100): dv = abs(vmax - vmin) # > 0 as nonsingular is called before. meanv = (vmax + vmin) / 2 if abs(meanv) / dv < threshold: offset = 0 else: offset = math.copysign(10 ** (math.log10(abs(meanv)) // 1), meanv) scale = 10 ** (math.log10(dv / n) // 1) return scale, offset class MaxNLocator: _extended_steps = np.array([ 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1., 1.5, 2., 2.5, 3., 4., 5., 6., 8., 10., 15.]) _min_n_ticks = 1 def __init__(self, nbins: int = 10): if nbins < 1: raise ValueError("MaxNLocator nbins must be an integer greater than zero") self.nbins = nbins def _raw_ticks(self, vmin, vmax): scale, offset = scale_range(vmin, vmax, self.nbins) _vmin = vmin - offset _vmax = vmax - offset steps = self._extended_steps * scale raw_step = ((_vmax - _vmin) / self.nbins) large_steps = steps >= raw_step # Find index of smallest large step istep = np.nonzero(large_steps)[0][0] # Start at smallest of the steps greater than the raw step, and check # if it provides enough ticks. If not, work backwards through # smaller steps until one is found that provides enough ticks. for step in steps[:istep+1][::-1]: best_vmin = (_vmin // step) * step # Find tick locations spanning the vmin-vmax range, taking into # account degradation of precision when there is a large offset. # The edge ticks beyond vmin and/or vmax are needed for the # "round_numbers" autolimit mode. edge = _Edge_integer(step, offset) low = edge.le(_vmin - best_vmin) high = edge.ge(_vmax - best_vmin) ticks = np.arange(low, high + 1) * step + best_vmin # Count only the ticks that will be displayed. nticks = ((ticks <= _vmax) & (ticks >= _vmin)).sum() if nticks >= self._min_n_ticks: break return ticks + offset def tick_values(self, vmin, vmax): vmin, vmax = nonsingular(vmin, vmax, expander=1e-13, tiny=1e-14) locs = self._raw_ticks(vmin, vmax) return locs