[docs]classElementPlot(BokehPlot,GenericElementPlot):active_tools=param.List(default=None,doc=""" Allows specifying which tools are active by default. Note that only one tool per gesture type can be active, e.g. both 'pan' and 'box_zoom' are drag tools, so if both are listed only the last one will be active. As a default 'pan' and 'wheel_zoom' will be used if the tools are enabled.""")align=param.ObjectSelector(default='start',objects=['start','center','end'],doc=""" Alignment (vertical or horizontal) of the plot in a layout.""")autorange=param.ObjectSelector(default=None,objects=['x','y',None],doc=""" Whether to auto-range along either the x- or y-axis, i.e. when panning or zooming along the orthogonal axis it will ensure all the data along the selected axis remains visible.""")border=param.Number(default=10,doc=""" Minimum border around plot.""")aspect=param.Parameter(default=None,doc=""" The aspect ratio mode of the plot. By default, a plot may select its own appropriate aspect ratio but sometimes it may be necessary to force a square aspect ratio (e.g. to display the plot as an element of a grid). The modes 'auto' and 'equal' correspond to the axis modes of the same name in matplotlib, a numeric value specifying the ratio between plot width and height may also be passed. To control the aspect ratio between the axis scales use the data_aspect option instead.""")backend_opts=param.Dict(default={},doc=""" A dictionary of custom options to apply to the plot or subcomponents of the plot. The keys in the dictionary mirror attribute access on the underlying models stored in the plot's handles, e.g. {'colorbar.margin': 10} will index the colorbar in the Plot.handles and then set the margin to 10.""")data_aspect=param.Number(default=None,doc=""" Defines the aspect of the axis scaling, i.e. the ratio of y-unit to x-unit.""")width=param.Integer(default=300,allow_None=True,bounds=(0,None),doc=""" The width of the component (in pixels). This can be either fixed or preferred width, depending on width sizing policy.""")height=param.Integer(default=300,allow_None=True,bounds=(0,None),doc=""" The height of the component (in pixels). This can be either fixed or preferred height, depending on height sizing policy.""")frame_width=param.Integer(default=None,allow_None=True,bounds=(0,None),doc=""" The width of the component (in pixels). This can be either fixed or preferred width, depending on width sizing policy.""")frame_height=param.Integer(default=None,allow_None=True,bounds=(0,None),doc=""" The height of the component (in pixels). This can be either fixed or preferred height, depending on height sizing policy.""")min_width=param.Integer(default=None,bounds=(0,None),doc=""" Minimal width of the component (in pixels) if width is adjustable.""")min_height=param.Integer(default=None,bounds=(0,None),doc=""" Minimal height of the component (in pixels) if height is adjustable.""")max_width=param.Integer(default=None,bounds=(0,None),doc=""" Minimal width of the component (in pixels) if width is adjustable.""")max_height=param.Integer(default=None,bounds=(0,None),doc=""" Minimal height of the component (in pixels) if height is adjustable.""")margin=param.Parameter(default=None,doc=""" Allows to create additional space around the component. May be specified as a two-tuple of the form (vertical, horizontal) or a four-tuple (top, right, bottom, left).""")multi_y=param.Boolean(default=False,doc=""" Enables multiple axes (one per value dimension) in overlays and useful for creating twin-axis plots. When enabled, axis options are no longer propagated between the elements and the overlay container, allowing customization on a per-axis basis.""")subcoordinate_y=param.ClassSelector(default=False,class_=(bool,tuple),doc=""" Enables sub-coordinate systems for this plot. Accepts also a numerical two-tuple that must be a range between 0 and 1, the plot will be rendered on this vertical range of the axis.""")subcoordinate_scale=param.Number(default=1,bounds=(0,None),inclusive_bounds=(False,True),doc=""" Scale factor for subcoordinate ranges to control the level of overlap.""")responsive=param.ObjectSelector(default=False,objects=[False,True,'width','height'])fontsize=param.Parameter(default={'title':'12pt'},allow_None=True,doc=""" Specifies various fontsizes of the displayed text. Finer control is available by supplying a dictionary where any unmentioned keys reverts to the default sizes, e.g: {'ticks': '20pt', 'title': '15pt', 'ylabel': '5px', 'xlabel': '5px'}""")gridstyle=param.Dict(default={},doc=""" Allows customizing the grid style, e.g. grid_line_color defines the line color for both grids while xgrid_line_color exclusively customizes the x-axis grid lines.""")labelled=param.List(default=['x','y'],doc=""" Whether to plot the 'x' and 'y' labels.""")lod=param.Dict(default={'factor':10,'interval':300,'threshold':2000,'timeout':500},doc=""" Bokeh plots offer "Level of Detail" (LOD) capability to accommodate large (but not huge) amounts of data. The available options are: * factor : Decimation factor to use when applying decimation. * interval : Interval (in ms) downsampling will be enabled after an interactive event. * threshold : Number of samples before downsampling is enabled. * timeout : Timeout (in ms) for checking whether interactive tool events are still occurring.""")show_frame=param.Boolean(default=True,doc=""" Whether or not to show a complete frame around the plot.""")shared_axes=param.Boolean(default=True,doc=""" Whether to invert the share axes across plots for linked panning and zooming.""")default_tools=param.List(default=['save','pan','wheel_zoom','box_zoom','reset'],doc="A list of plugin tools to use on the plot.")tools=param.List(default=[],doc=""" A list of plugin tools to use on the plot.""")toolbar=param.ObjectSelector(default='right',objects=["above","below","left","right","disable",None],doc=""" The toolbar location, must be one of 'above', 'below', 'left', 'right', None.""")xformatter=param.ClassSelector(default=None,class_=(str,TickFormatter,FunctionType),doc=""" Formatter for ticks along the x-axis.""")yformatter=param.ClassSelector(default=None,class_=(str,TickFormatter,FunctionType),doc=""" Formatter for ticks along the x-axis.""")_categorical=False_allow_implicit_categories=True# Declare which styles cannot be mapped to a non-scalar dimension_nonvectorized_styles=[]# Declares the default types for continuous x- and y-axes_x_range_type=Range1d_y_range_type=Range1d# Whether the plot supports streaming data_stream_data=Truedef__init__(self,element,plot=None,**params):self._subcoord_standalone_=Noneself.current_ranges=Nonesuper().__init__(element,**params)self.handles={}ifplotisNoneelseself.handles['plot']self.static=len(self.hmap)==1andlen(self.keys)==len(self.hmap)self.callbacks,self.source_streams=self._construct_callbacks()self.static_source=Falseself.streaming=[sforsinself.streamsifisinstance(s,Buffer)]self.geographic=bool(self.hmap.last.traverse(lambdax:x,Tiles))ifself.geographicandself.projectionisNone:self.projection='mercator'# Whether axes are shared between plotsself._shared={'x-main-range':False,'y-main-range':False}self._js_on_data_callbacks=[]# Flag to check whether plot has been updatedself._updated=Falsedef_hover_opts(self,element):ifself.batched:dims=list(self.hmap.last.kdims)else:dims=list(self.overlay_dims.keys())dims+=element.dimensions()returnlist(util.unique_iterator(dims)),{}def_init_tools(self,element,callbacks=None):""" Processes the list of tools to be supplied to the plot. """ifcallbacksisNone:callbacks=[]tooltips,hover_opts=self._hover_opts(element)tooltips=[(ttp.pprint_label,'@{%s}'%util.dimension_sanitizer(ttp.name))ifisinstance(ttp,Dimension)elsettpforttpintooltips]ifnottooltips:tooltips=Nonecallbacks=callbacks+self.callbackscb_tools,tool_names=[],[]hover=Falseforcbincallbacks:forhandleincb.models:ifhandleandhandleinTOOLS_MAP:tool_names.append(handle)ifhandle=='hover':tool=tools.HoverTool(tooltips=tooltips,tags=['hv_created'],**hover_opts)hover=toolelse:tool=TOOLS_MAP[handle]()cb_tools.append(tool)self.handles[handle]=tooltool_list=[]fortoolincb_tools+self.default_tools+self.tools:iftoolintool_names:continueiftoolin['vline','hline']:tool=tools.HoverTool(tooltips=tooltips,tags=['hv_created'],mode=tool,**hover_opts)elifbokeh32andtoolin['wheel_zoom','xwheel_zoom','ywheel_zoom']:iftool.startswith('x'):zoom_dims='width'eliftool.startswith('y'):zoom_dims='height'else:zoom_dims='both'tool=tools.WheelZoomTool(zoom_together='none',dimensions=zoom_dims,tags=['hv_created'])tool_list.append(tool)copied_tools=[]fortoolintool_list:ifisinstance(tool,tools.Tool):properties=tool.properties_with_values(include_defaults=False)tool=type(tool)(**properties)copied_tools.append(tool)hover_tools=[tfortincopied_toolsifisinstance(t,tools.HoverTool)]if'hover'incopied_tools:hover=tools.HoverTool(tooltips=tooltips,tags=['hv_created'],**hover_opts)copied_tools[copied_tools.index('hover')]=hoverelifany(hover_tools):hover=hover_tools[0]ifhover:self.handles['hover']=hoverbox_tools=[tfortincopied_toolsifisinstance(t,tools.BoxSelectTool)]ifbox_tools:self.handles['box_select']=box_tools[0]lasso_tools=[tfortincopied_toolsifisinstance(t,tools.LassoSelectTool)]iflasso_tools:self.handles['lasso_select']=lasso_tools[0]# Link the selection properties between toolsifbox_toolsandlasso_tools:box_tools[0].js_link('mode',lasso_tools[0],'mode')lasso_tools[0].js_link('mode',box_tools[0],'mode')returncopied_toolsdef_update_hover(self,element):tool=self.handles['hover']if'hv_created'intool.tags:tooltips,hover_opts=self._hover_opts(element)tooltips=[(ttp.pprint_label,'@{%s}'%util.dimension_sanitizer(ttp.name))ifisinstance(ttp,Dimension)elsettpforttpintooltips]tool.tooltips=tooltipselse:plot_opts=element.opts.get('plot','bokeh')new_hover=[tfortinplot_opts.kwargs.get('tools',[])ifisinstance(t,tools.HoverTool)]ifnew_hover:tool.tooltips=new_hover[0].tooltipsdef_get_hover_data(self,data,element,dimensions=None):""" Initializes hover data based on Element dimension values. If empty initializes with no data. """if'hover'notinself.handlesorself.static_source:returnfordin(dimensionsorelement.dimensions()):dim=util.dimension_sanitizer(d.name)ifdimnotindata:data[dim]=element.dimension_values(d)fork,vinself.overlay_dims.items():dim=util.dimension_sanitizer(k.name)ifdimnotindata:data[dim]=[v]*len(next(iter(data.values())))def_shared_axis_range(self,plots,specs,range_type,axis_type,pos):""" Given a list of other plots return the shared axis from another plot by matching the dimensions specs stored as tags on the dimensions. Returns None if there is no such axis. """dim_range=Nonecategorical=range_typeisFactorRangeforplotinplots:ifplotisNoneorspecsisNone:continueax='x'ifpos==0else'y'plot_range=getattr(plot,f'{ax}_range',None)axes=getattr(plot,f'{ax}axis',None)extra_ranges=getattr(plot,f'extra_{ax}_ranges',{})if(plot_rangeandplot_range.tagsandmatch_dim_specs(plot_range.tags[0],specs)andmatch_ax_type(axes[0],axis_type)andnot(categoricalandnotisinstance(dim_range,FactorRange))):dim_range=plot_rangeifdim_rangeisnotNone:breakforextra_rangeinextra_ranges.values():if(extra_range.tagsandmatch_dim_specs(extra_range.tags[0],specs)andmatch_yaxis_type_to_range(axes,axis_type,extra_range.name)andnot(categoricalandnotisinstance(dim_range,FactorRange))):dim_range=extra_rangebreakreturndim_range@propertydef_subcoord_overlaid(self):""" Indicates when the context is a subcoordinate plot, either from within the overlay rendering or one of its subplots. Used to skip code paths when rendering an element outside of an overlay. """ifself._subcoord_standalone_isnotNone:returnself._subcoord_standalone_self._subcoord_standalone_=((isinstance(self,OverlayPlot)andself.subcoordinate_y)or(notisinstance(self,OverlayPlot)andself.overlaidandself.subcoordinate_y))returnself._subcoord_standalone_def_axis_props(self,plots,subplots,element,ranges,pos,*,dim=None,range_tags_extras=None,extra_range_name=None):ifrange_tags_extrasisNone:range_tags_extras=[]el=element.traverse(lambdax:x,[lambdael:isinstance(el,Element)andnotisinstance(el,(Annotation,Tiles))])el=el[0]ifelelseelementifisinstance(el,Graph):el=el.nodesrange_el=elifself.batchedandnotisinstance(self,OverlayPlot)elseelement# For y-axes check if we explicitly passed in a dimension.# This is used by certain plot types to create an axis from# a synthetic dimension and exclusively supported for y-axes.ifpos==1anddim:dims=[dim]v0,v1=util.max_range([elrange.get(dim.name,{'combined':(None,None)})['combined']forelrangeinranges.values()])axis_label=str(dim)specs=((dim.name,dim.label,dim.unit),)else:try:l,b,r,t=self.get_extents(range_el,ranges,dimension=dim)exceptTypeError:# Backward compatibility for e.g. GeoViews=<1.10.1 since dimension# is a newly added keyword argument in HoloViews 1.17l,b,r,t=self.get_extents(range_el,ranges)ifself.invert_axes:l,b,r,t=b,l,t,rifpos==1andself._subcoord_overlaid:ifisinstance(self.subcoordinate_y,bool):offset=self.subcoordinate_scale/2.# This sum() is equal to n+1, n being the number of elements contained# in the overlay with subcoordinate_y=True, as the traversal goes through# the root overlay that has subcoordinate_y=True too since it's propagated.v0,v1=0-offset,sum(self.traverse(lambdap:p.subcoordinate_y))-2+offsetelse:v0,v1=0,1else:v0,v1=(l,r)ifpos==0else(b,t)axis_dims=list(self._get_axis_dims(el))ifself.invert_axes:axis_dims[0],axis_dims[1]=axis_dims[:2][::-1]dims=axis_dims[pos]ifdims:ifnotisinstance(dims,list):dims=[dims]specs=tuple((d.name,d.label,d.unit)fordindims)else:specs=Noneifdim:axis_label=str(dim)else:xlabel,ylabel,zlabel=self._get_axis_labels(dimsifdimselse(None,None))ifself.invert_axes:xlabel,ylabel=ylabel,xlabelaxis_label=ylabelifposelsexlabelifdims:dims=dims[:2][::-1]categorical=any(self.traverse(lambdaplot:plot._categorical))ifself.subcoordinate_y:categorical=FalseelifdimsisnotNoneandany(dim.nameinrangesand'factors'inranges[dim.name]fordimindims):categorical=Trueelse:categorical=any(isinstance(v,(str,bytes))forvin(v0,v1))range_types=(self._x_range_type,self._y_range_type)ifself.invert_axes:range_types=range_types[::-1]range_type=range_types[pos]# If multi_x/y then grab opts from elementaxis_type='log'if(self.logx,self.logy)[pos]else'auto'ifdims:iflen(dims)>1orrange_typeisFactorRange:axis_type='auto'categorical=Trueelifel.get_dimension(dims[0]):dim_type=el.get_dimension_type(dims[0])if((dim_typeisnp.object_andissubclass(type(v0),util.datetime_types))ordim_typeinutil.datetime_types):axis_type='datetime'norm_opts=self.lookup_options(el,'norm').optionsshared_name=extra_range_nameor('x-main-range'ifpos==0else'y-main-range')ifplotsandself.shared_axesandnotnorm_opts.get('axiswise',False)andnotdim:dim_range=self._shared_axis_range(plots,specs,range_type,axis_type,pos)ifdim_range:self._shared[shared_name]=Trueifself._shared.get(shared_name)andnotdim:passelifcategorical:axis_type='auto'dim_range=FactorRange()elifNonein[v0,v1]orany(Trueifisinstance(el,(str,bytes)+util.cftime_types)elsenotutil.isfinite(el)forelin[v0,v1]):dim_range=range_type()elifissubclass(range_type,FactorRange):dim_range=range_type(name=dim.nameifdimelseNone)else:dim_range=range_type(start=v0,end=v1,name=dim.nameifdimelseNone)ifnotdim_range.tagsandspecsisnotNone:dim_range.tags.append(specs)dim_range.tags.append(range_tags_extras)ifextra_range_name:dim_range.name=extra_range_namereturnaxis_type,axis_label,dim_rangedef_create_extra_axes(self,plots,subplots,element,ranges):ifself.invert_axes:axpos0,axpos1='below','above'else:axpos0,axpos1='left','right'ax_specs,yaxes,dimensions={},{},{}subcoordinate_axes=0forel,spinzip(element,self.subplots.values()):ax_dims=sp._get_axis_dims(el)[:2]ifsp.invert_axes:ax_dims[::-1]yd=ax_dims[1]opts=el.opts.get('plot',backend='bokeh').kwargsifnotisinstance(yd,Dimension)oryd.nameinyaxes:continueifself._subcoord_overlaid:ifopts.get('subcoordinate_y')isNone:continueax_name=el.labelsubcoordinate_axes+=1else:ax_name=yd.namedimensions[ax_name]=ydyaxes[ax_name]={'position':opts.get('yaxis',axpos1iflen(yaxes)elseaxpos0),'autorange':opts.get('autorange',None),'logx':opts.get('logx',False),'logy':opts.get('logy',False),'invert_yaxis':opts.get('invert_yaxis',False),# 'xlim': opts.get('xlim', (np.nan, np.nan)), # TODO'ylim':opts.get('ylim',(np.nan,np.nan)),'label':opts.get('ylabel',dim_axis_label(yd)),'fontsize':{'axis_label_text_font_size':sp._fontsize('ylabel').get('fontsize'),'major_label_text_font_size':sp._fontsize('yticks').get('fontsize')},'subcoordinate_y':(subcoordinate_axes-1)ifself._subcoord_overlaidelseNone}forydim,infoinyaxes.items():range_tags_extras={'invert_yaxis':info['invert_yaxis']}ifinfo['subcoordinate_y']isnotNone:range_tags_extras['subcoordinate_y']=info['subcoordinate_y']ifinfo['autorange']=='y':range_tags_extras['autorange']=Truelowerlim,upperlim=info['ylim'][0],info['ylim'][1]ifnot((lowerlimisNone)ornp.isnan(lowerlim)):range_tags_extras['y-lowerlim']=lowerlimifnot((upperlimisNone)ornp.isnan(upperlim)):range_tags_extras['y-upperlim']=upperlimelse:range_tags_extras['autorange']=Falseax_props=self._axis_props(plots,subplots,element,ranges,pos=1,dim=dimensions[ydim],range_tags_extras=range_tags_extras,extra_range_name=ydim)log_enabled=info['logx']ifself.invert_axeselseinfo['logy']ax_type='log'iflog_enabledelseax_props[0]ax_specs[ydim]=(ax_type,info['label'],ax_props[2],info['position'],info['fontsize'])returnyaxes,ax_specsdef_init_plot(self,key,element,plots,ranges=None):""" Initializes Bokeh figure to draw Element into and sets basic figure and axis attributes including axes types, labels, titles and plot height and width. """subplots=list(self.subplots.values())ifself.subplotselse[]axis_specs={'x':{},'y':{}}axis_specs['x']['x']=self._axis_props(plots,subplots,element,ranges,pos=0)+(self.xaxis,{})ifself.multi_y:ifnotbokeh32:self.param.warning('Independent axis zooming for multi_y=True only supported for Bokeh >=3.2')yaxes,extra_axis_specs=self._create_extra_axes(plots,subplots,element,ranges)axis_specs['y'].update(extra_axis_specs)else:range_tags_extras={'invert_yaxis':self.invert_yaxis}ifself.autorange=='y':range_tags_extras['autorange']=Truelowerlim,upperlim=self.ylimifnot((lowerlimisNone)ornp.isnan(lowerlim)):range_tags_extras['y-lowerlim']=lowerlimifnot((upperlimisNone)ornp.isnan(upperlim)):range_tags_extras['y-upperlim']=upperlimelse:range_tags_extras['autorange']=Falseaxis_specs['y']['y']=self._axis_props(plots,subplots,element,ranges,pos=1,range_tags_extras=range_tags_extras)+(self.yaxis,{})ifself._subcoord_overlaid:_,extra_axis_specs=self._create_extra_axes(plots,subplots,element,ranges)axis_specs['y'].update(extra_axis_specs)properties,axis_props={},{'x':{},'y':{}}foraxis,axis_specinaxis_specs.items():for(axis_dim,(axis_type,axis_label,axis_range,axis_position,fontsize))inaxis_spec.items():scale=get_scale(axis_range,axis_type)iff'{axis}_range'inproperties:properties[f'extra_{axis}_ranges']=extra_ranges=properties.get(f'extra_{axis}_ranges',{})extra_ranges[axis_dim]=axis_rangeifnotself.subcoordinate_y:properties[f'extra_{axis}_scales']=extra_scales=properties.get(f'extra_{axis}_scales',{})extra_scales[axis_dim]=scaleelse:properties[f'{axis}_range']=axis_rangeproperties[f'{axis}_scale']=scaleproperties[f'{axis}_axis_type']=axis_typeifaxis_labelandaxisinself.labelled:properties[f'{axis}_axis_label']=axis_labellocs={'left':'left','right':'right'}ifaxis=='y'else{'bottom':'below','top':'above'}ifaxis_positionisNone:axis_props[axis]['visible']=Falseaxis_props[axis].update(fontsize)forloc,posinlocs.items():ifaxis_positionandlocinaxis_position:properties[f'{axis}_axis_location']=posifnotself.show_frame:properties['outline_line_alpha']=0ifself.show_titleandself.adjoinedisNone:title=self._format_title(key,separator=' ')else:title=''ifself.toolbar!='disable':tools=self._init_tools(element)properties['tools']=toolsproperties['toolbar_location']=self.toolbarelse:properties['tools']=[]properties['toolbar_location']=Noneifself.renderer.webgl:properties['output_backend']='webgl'properties.update(**self._plot_properties(key,element))figure=bokeh.plotting.figurewithwarnings.catch_warnings():# Bokeh raises warnings about duplicate tools but these# are not really an issuewarnings.simplefilter('ignore',UserWarning)fig=figure(title=title,**properties)fig.xaxis[0].update(**axis_props['x'])fig.yaxis[0].update(**axis_props['y'])# Do not add the extra axes to the layout if subcoordinates are usedifself._subcoord_overlaid:returnfigmulti_ax='x'ifself.invert_axeselse'y'foraxis_dim,range_objinproperties.get(f'extra_{multi_ax}_ranges',{}).items():axis_type,axis_label,_,axis_position,fontsize=axis_specs[multi_ax][axis_dim]ax_cls,ax_kwargs=get_axis_class(axis_type,range_obj,dim=1)ax_kwargs[f'{multi_ax}_range_name']=axis_dimax_kwargs.update(fontsize)ifaxis_positionisNone:ax_kwargs['visible']=Falseaxis_position='above'ifmulti_ax=='x'else'right'ifmulti_axinself.labelled:ax_kwargs['axis_label']=axis_labelax=ax_cls(**ax_kwargs)fig.add_layout(ax,axis_position)returnfigdef_plot_properties(self,key,element):""" Returns a dictionary of plot properties. """init='plot'notinself.handlessize_multiplier=self.renderer.size/100.options=self._traverse_options(element,'plot',['width','height'],defaults=False)logger=self.paramifinitelseNoneaspect_props,dimension_props=compute_layout_properties(self.width,self.height,self.frame_width,self.frame_height,options.get('width'),options.get('height'),self.aspect,self.data_aspect,self.responsive,size_multiplier,logger=logger)ifnotinit:ifaspect_props['aspect_ratio']isNone:aspect_props['aspect_ratio']=self.state.aspect_ratioplot_props={'align':self.align,'margin':self.margin,'max_width':self.max_width,'max_height':self.max_height,'min_width':self.min_width,'min_height':self.min_height}plot_props.update(aspect_props)ifnotself.drawn:plot_props.update(dimension_props)ifself.bgcolor:plot_props['background_fill_color']=self.bgcolorifself.borderisnotNone:forpin['left','right','top','bottom']:plot_props['min_border_'+p]=self.borderlod=dict(self.param["lod"].default,**self.lod)if"lod"inself.paramelseself.lodforlod_prop,vinlod.items():plot_props['lod_'+lod_prop]=vreturnplot_propsdef_set_active_tools(self,plot):"Activates the list of active tools"ifplotisNoneorself.toolbar=="disable":returnifself.active_toolsisNone:enabled_tools=set(self.default_tools+self.tools)active_tools={'pan','wheel_zoom'}&enabled_toolselse:active_tools=self.active_toolsifactive_tools==[]:# Removes Bokeh default behavior of having Pan enabled by defaultplot.toolbar.active_drag=Nonefortoolinactive_tools:ifisinstance(tool,str):tool_type=TOOL_TYPES.get(tool,type(None))matching=[tfortinplot.toolbar.toolsifisinstance(t,tool_type)]ifnotmatching:self.param.warning(f'Tool of type {tool!r} could not be found ''and could not be activated by default.')continuetool=matching[0]ifisinstance(tool,tools.Drag):plot.toolbar.active_drag=toolifisinstance(tool,tools.Scroll):plot.toolbar.active_scroll=toolifisinstance(tool,tools.Tap):plot.toolbar.active_tap=toolifisinstance(tool,tools.InspectTool):plot.toolbar.active_inspect.append(tool)def_title_properties(self,key,plot,element):ifself.show_titleandself.adjoinedisNone:title=self._format_title(key,separator=' ')else:title=''opts=dict(text=title)# this will override theme if not set to the default 12pttitle_font=self._fontsize('title').get('fontsize')iftitle_font!='12pt':opts['text_font_size']=title_fontreturnoptsdef_populate_axis_handles(self,plot):self.handles['xaxis']=plot.xaxis[0]self.handles['x_range']=plot.x_rangeself.handles['extra_x_ranges']=plot.extra_x_rangesself.handles['extra_x_scales']=plot.extra_x_scalesself.handles['yaxis']=plot.yaxis[0]self.handles['y_range']=plot.y_rangeself.handles['extra_y_ranges']=plot.extra_y_rangesself.handles['extra_y_scales']=plot.extra_y_scalesdef_axis_properties(self,axis,key,plot,dimension=None,ax_mapping=None):""" Returns a dictionary of axis properties depending on the specified axis. """# need to copy dictionary by calling dict() on itifax_mappingisNone:ax_mapping={'x':0,'y':1}axis_props=dict(theme_attr_json(self.renderer.theme,'Axis'))if((axis=='x'andself.xaxisin['bottom-bare','top-bare','bare'])or(axis=='y'andself.yaxisin['left-bare','right-bare','bare'])):zero_pt='0pt'axis_props['axis_label_text_font_size']=zero_ptaxis_props['major_label_text_font_size']=zero_ptaxis_props['major_tick_line_color']=Noneaxis_props['minor_tick_line_color']=Noneelse:labelsize=self._fontsize(f'{axis}label').get('fontsize')iflabelsize:axis_props['axis_label_text_font_size']=labelsizeticksize=self._fontsize(f'{axis}ticks',common=False).get('fontsize')ifticksize:axis_props['major_label_text_font_size']=ticksizerotation=self.xrotationifaxis=='x'elseself.yrotationifrotation:axis_props['major_label_orientation']=np.radians(rotation)ticker=self.xticksifaxis=='x'elseself.yticksifisinstance(ticker,np.ndarray):ticker=list(ticker)ifisinstance(ticker,Ticker):axis_props['ticker']=tickerelifisinstance(ticker,int):axis_props['ticker']=BasicTicker(desired_num_ticks=ticker)elifisinstance(ticker,(tuple,list)):ifall(isinstance(t,tuple)fortinticker):ticks,labels=zip(*ticker)# Ensure floats which are integers are serialized as ints# because in JS the lookup fails otherwiseticks=[int(t)ifisinstance(t,float)andt.is_integer()elsetfortinticks]labels=[lifisinstance(l,str)elsestr(l)forlinlabels]else:ticks,labels=ticker,Noneifticksandutil.isdatetime(ticks[0]):ticks=[util.dt_to_int(tick,'ms')fortickinticks]axis_props['ticker']=FixedTicker(ticks=ticks)iflabelsisnotNone:axis_props['major_label_overrides']=dict(zip(ticks,labels))elifself._subcoord_overlaidandaxis=='y':ticks,labels=[],[]idx=0forel,spinzip(self.current_frame,self.subplots.values()):ifnotsp.subcoordinate_y:continueycenter=idxifisinstance(sp.subcoordinate_y,bool)else0.5*sum(sp.subcoordinate_y)idx+=1ticks.append(ycenter)labels.append(el.label)axis_props['ticker']=FixedTicker(ticks=ticks)iflabelsisnotNone:axis_props['major_label_overrides']=dict(zip(ticks,labels))formatter=self.xformatterifaxis=='x'elseself.yformatterifformatter:formatter=wrap_formatter(formatter,axis)ifformatterisnotNone:axis_props['formatter']=formatterelifCustomJSTickFormatterisnotNoneandax_mappingandisinstance(dimension,Dimension):formatter=Noneifdimension.value_format:formatter=dimension.value_formatelifdimension.typeindimension.type_formatters:formatter=dimension.type_formatters[dimension.type]ifaxis=='x':axis_obj=plot.xaxis[0]elifaxis=='y':axis_obj=plot.yaxis[0]if(self.geographicandisinstance(self.projection,str)andself.projection=='mercator'):dimension='lon'ifaxis=='x'else'lat'axis_props['ticker']=MercatorTicker(dimension=dimension)axis_props['formatter']=MercatorTickFormatter(dimension=dimension)box_zoom=self.state.select(type=tools.BoxZoomTool)ifbox_zoom:box_zoom[0].match_aspect=Truewheel_zoom=self.state.select(type=tools.WheelZoomTool)ifwheel_zoom:wheel_zoom[0].zoom_on_axis=Falseelifisinstance(axis_obj,CategoricalAxis):forkeyinlist(axis_props):ifkey.startswith('major_label'):# set the group labels equal to major (actually minor)new_key=key.replace('major_label','group')axis_props[new_key]=axis_props[key]# major ticks are actually minor ticks in a categorical# so if user inputs minor ticks sizes, then use that;# else keep major (group) == minor (subgroup)msize=self._fontsize(f'minor_{axis}ticks',common=False).get('fontsize')ifmsizeisnotNone:axis_props['major_label_text_font_size']=msizereturnaxis_propsdef_update_plot(self,key,plot,element=None):""" Updates plot parameters on every frame """plot.update(**self._plot_properties(key,element))ifnotself.multi_y:self._update_labels(key,plot,element)self._update_title(key,plot,element)self._update_grid(plot)def_update_labels(self,key,plot,element):el=element.traverse(lambdax:x,[Element])el=el[0]ifelelseelementdimensions=self._get_axis_dims(el)props={axis:self._axis_properties(axis,key,plot,dim)foraxis,diminzip(['x','y'],dimensions)}xlabel,ylabel,zlabel=self._get_axis_labels(dimensions)ifself.invert_axes:xlabel,ylabel=ylabel,xlabelprops['x']['axis_label']=xlabelif'x'inself.labelledorself.xlabelelse''props['y']['axis_label']=ylabelif'y'inself.labelledorself.ylabelelse''recursive_model_update(plot.xaxis[0],props.get('x',{}))recursive_model_update(plot.yaxis[0],props.get('y',{}))def_update_title(self,key,plot,element):ifplot.title:plot.title.update(**self._title_properties(key,plot,element))else:plot.title=Title(**self._title_properties(key,plot,element))def_update_backend_opts(self):plot=self.handles["plot"]model_accessor_aliases={"cbar":"colorbar","p":"plot","xaxes":"xaxis","yaxes":"yaxis",}foropt,valinself.backend_opts.items():parsed_opt=self._parse_backend_opt(opt,plot,model_accessor_aliases)ifparsed_optisNone:continuemodel,attr_accessor=parsed_opt# not using isinstance because some models inherit from listifnotisinstance(model,list):# to reduce the need for many if/else; cast to list# to do the same thing for both single and multiple modelsmodels=[model]else:models=modelvalid_options=models[0].properties()ifattr_accessornotinvalid_options:kws=Keywords(values=valid_options)matches=sorted(kws.fuzzy_match(attr_accessor))self.param.warning(f"Could not find {attr_accessor!r} property on {type(models[0]).__name__!r} "f"model. Ensure the custom option spec {opt!r} you provided references a "f"valid attribute on the specified model. "f"Similar options include {matches!r}")continueforminmodels:setattr(m,attr_accessor,val)def_update_grid(self,plot):ifnotself.show_grid:plot.xgrid.grid_line_color=Noneplot.ygrid.grid_line_color=Nonereturnreplace=['bounds','bands','visible','level','ticker','visible']style_items=list(self.gridstyle.items())both={k:vfork,vinstyle_itemsifk.startswith(('grid_','minor_grid'))}xgrid={k.replace('xgrid','grid'):vfork,vinstyle_itemsif'xgrid'ink}ygrid={k.replace('ygrid','grid'):vfork,vinstyle_itemsif'ygrid'ink}xopts={k.replace('grid_','')ifany(rinkforrinreplace)elsek:vfork,vindict(both,**xgrid).items()}yopts={k.replace('grid_','')ifany(rinkforrinreplace)elsek:vfork,vindict(both,**ygrid).items()}ifplot.xaxisand'ticker'notinxopts:xopts['ticker']=plot.xaxis[0].tickerifplot.yaxisand'ticker'notinyopts:yopts['ticker']=plot.yaxis[0].tickerplot.xgrid[0].update(**xopts)plot.ygrid[0].update(**yopts)def_update_ranges(self,element,ranges):x_range=self.handles['x_range']y_range=self.handles['y_range']plot=self.handles['plot']self._update_main_ranges(element,x_range,y_range,ranges)ifself._subcoord_overlaid:return# ALERT: stream handling not handledstreaming=Falsemulti_dim='x'ifself.invert_axeselse'y'foraxis_dim,extra_y_rangeinself.handles[f'extra_{multi_dim}_ranges'].items():_,b,_,t=self.get_extents(element,ranges,dimension=axis_dim)factors=self._get_dimension_factors(element,ranges,axis_dim)extra_scale=self.handles[f'extra_{multi_dim}_scales'][axis_dim]# Assumes scales and ranges ziplog=isinstance(extra_scale,LogScale)range_update=(not(self.model_changed(extra_y_range)orself.model_changed(plot))andself.framewise)ifself.drawnandnotrange_update:continueself._update_range(extra_y_range,b,t,factors,self._get_tag(extra_y_range,'invert_yaxis'),self._shared.get(extra_y_range.name,False),log,streaming)def_update_main_ranges(self,element,x_range,y_range,ranges):plot=self.handles['plot']l,b,r,t=None,None,None,Noneifany(isinstance(r,(Range1d,DataRange1d))forrin[x_range,y_range]):ifself.multi_y:range_dim=x_range.nameifself.invert_axeselsey_range.nameelse:range_dim=Nonetry:l,b,r,t=self.get_extents(element,ranges,dimension=range_dim)exceptTypeError:# Backward compatibility for e.g. GeoViews=<1.10.1 since dimension# is a newly added keyword argument in HoloViews 1.17l,b,r,t=self.get_extents(element,ranges)ifself.invert_axes:l,b,r,t=b,l,t,rxfactors,yfactors=None,Noneifany(isinstance(ax_range,FactorRange)forax_rangein[x_range,y_range]):xfactors,yfactors=self._get_factors(element,ranges)framewise=self.framewisestreaming=(self.streamingandany(stream._triggeringandstream.followingforstreaminself.streaming))xupdate=((not(self.model_changed(x_range)orself.model_changed(plot))and(framewiseorstreaming))orxfactorsisnotNone)yupdate=((not(self.model_changed(x_range)orself.model_changed(plot))and(framewiseorstreaming)oryfactorsisnotNone)andnotself.subcoordinate_y)options=self._traverse_options(element,'plot',['width','height'],defaults=False)fixed_width=(self.frame_widthoroptions.get('width'))fixed_height=(self.frame_heightoroptions.get('height'))constrained_width=options.get('min_width')oroptions.get('max_width')constrained_height=options.get('min_height')oroptions.get('max_height')data_aspect=(self.aspect=='equal'orself.data_aspect)xaxis,yaxis=self.handles['xaxis'],self.handles['yaxis']categorical=isinstance(xaxis,CategoricalAxis)orisinstance(yaxis,CategoricalAxis)datetime=isinstance(xaxis,DatetimeAxis)orisinstance(yaxis,CategoricalAxis)range_streams=[sforsinself.streamsifisinstance(s,RangeXY)]ifdata_aspectand(categoricalordatetime):ax_type='categorical'ifcategoricalelse'datetime axes'self.param.warning('Cannot set data_aspect if one or both ''axes are %s, the option will ''be ignored.'%ax_type)elifdata_aspect:plot=self.handles['plot']xspan=r-lifutil.is_number(l)andutil.is_number(r)elseNoneyspan=t-bifutil.is_number(b)andutil.is_number(t)elseNoneifself.drawnor(fixed_widthandfixed_height)or(constrained_widthorconstrained_height):# After initial draw or if aspect is explicit# adjust range to match the plot dimension aspectratio=self.data_aspector1ifself.aspect=='square':frame_aspect=1elifself.aspectandself.aspect!='equal':frame_aspect=self.aspectelifplot.frame_heightandplot.frame_width:frame_aspect=plot.frame_height/plot.frame_widthelse:# Skip if aspect can't be determinedreturnifself.drawn:current_l,current_r=plot.x_range.start,plot.x_range.endcurrent_b,current_t=plot.y_range.start,plot.y_range.endcurrent_xspan,current_yspan=(current_r-current_l),(current_t-current_b)else:current_l,current_r,current_b,current_t=l,r,b,tcurrent_xspan,current_yspan=xspan,yspanifany(rs._triggeringforrsinrange_streams):# If the event was triggered by a RangeXY stream# event we want to get the latest range span# values so we do not accidentally trigger a# loop of eventsl,r,b,t=current_l,current_r,current_b,current_txspan,yspan=current_xspan,current_yspansize_streams=[sforsinself.streamsifisinstance(s,PlotSize)]ifany(ss._triggeringforssinsize_streams)andself._updated:# Do not trigger on frame size changes, except for# the initial one which can be important if width# and/or height constraints have forced different# aspect. After initial event we skip because size# changes can trigger event loops if the tick# labels change the canvas sizereturndesired_xspan=yspan*(ratio/frame_aspect)desired_yspan=xspan/(ratio/frame_aspect)if((np.allclose(desired_xspan,xspan,rtol=0.05)andnp.allclose(desired_yspan,yspan,rtol=0.05))ornot(util.isfinite(xspan)andutil.isfinite(yspan))):passelifdesired_yspan>=yspan:desired_yspan=current_xspan/(ratio/frame_aspect)ypad=(desired_yspan-yspan)/2.b,t=b-ypad,t+ypadyupdate=Trueelse:desired_xspan=current_yspan*(ratio/frame_aspect)xpad=(desired_xspan-xspan)/2.l,r=l-xpad,r+xpadxupdate=Trueelifnot(fixed_heightandfixed_width):# Set initial aspectaspect=self.get_aspect(xspan,yspan)width=plot.frame_widthorplot.widthor300height=plot.frame_heightorplot.heightor300ifnot(fixed_widthorfixed_height)andnotself.responsive:fixed_height=Trueiffixed_height:plot.frame_height=heightplot.frame_width=int(height/aspect)plot.width,plot.height=None,Noneeliffixed_width:plot.frame_width=widthplot.frame_height=int(width*aspect)plot.width,plot.height=None,Noneelse:plot.aspect_ratio=1./aspectbox_zoom=plot.select(type=tools.BoxZoomTool)scroll_zoom=plot.select(type=tools.WheelZoomTool)ifbox_zoom:box_zoom.match_aspect=Trueifscroll_zoom:scroll_zoom.zoom_on_axis=Falseelifany(rs._triggeringforrsinrange_streams):xupdate,yupdate=False,Falseifnotself.drawnorxupdate:self._update_range(x_range,l,r,xfactors,self.invert_xaxis,self._shared['x-main-range'],self.logx,streaming)ifnot(self.drawnorself.subcoordinate_y)oryupdate:self._update_range(y_range,b,t,yfactors,self._get_tag(y_range,'invert_yaxis'),self._shared['y-main-range'],self.logy,streaming)def_get_tag(self,model,tag_name):"""Get a tag from a Bokeh model Args: model (Model): Bokeh model tag_name (str): Name of tag to get Returns: tag_value: Value of tag or False if not found """fortaginmodel.tags:ifisinstance(tag,dict)andtag_nameintag:returntag[tag_name]returnFalsedef_update_range(self,axis_range,low,high,factors,invert,shared,log,streaming=False):ifisinstance(axis_range,FactorRange):factors=list(decode_bytes(factors))ifinvert:factors=factors[::-1]axis_range.factors=factorsreturnifnot(isinstance(axis_range,(Range1d,DataRange1d))andself.apply_ranges):returnifisinstance(low,util.cftime_types):passelif(low==highandlowisnotNone):ifisinstance(low,util.datetime_types):offset=np.timedelta64(500,'ms')low,high=np.datetime64(low),np.datetime64(high)low-=offsethigh+=offsetelse:offset=abs(low*0.1iflowelse0.5)low-=offsethigh+=offsetifshared:shared=(axis_range.start,axis_range.end)low,high=util.max_range([(low,high),shared])ifinvert:low,high=high,lowifnotisinstance(low,util.datetime_types)andlogand(lowisNoneorlow<=0):low=0.01ifhigh>0.01else10**(np.log10(high)-2)self.param.warning("Logarithmic axis range encountered value less ""than or equal to zero, please supply explicit ""lower bound to override default of %.3f."%low)updates={}ifutil.isfinite(low):updates['start']=(axis_range.start,low)updates['reset_start']=updates['start']ifutil.isfinite(high):updates['end']=(axis_range.end,high)updates['reset_end']=updates['end']fork,(old,new)inupdates.items():ifisinstance(new,util.cftime_types):new=date_to_integer(new)axis_range.update(**{k:new})ifstreamingandnotk.startswith('reset_'):axis_range.trigger(k,old,new)def_setup_autorange(self):""" Sets up a callback which will iterate over available data renderers and auto-range along one axis. """ifnotisinstance(self,OverlayPlot)andnotself.apply_ranges:returnifself.autorangeisNone:returndim=self.autorangeifdim=='x':didx=0odim='y'else:didx=1odim='x'ifnotself.padding:p0,p1=0,0elifisinstance(self.padding,tuple):pad=self.padding[didx]ifisinstance(pad,tuple):p0,p1=padelse:p0,p1=pad,padelse:p0,p1=self.padding,self.padding# Clean this up in bokeh 3.0 using View.find_one APIcallback=CustomJS(code=f""" const cb = function() {{ function get_padded_range(key, lowerlim, upperlim, invert) {{ let vmin = range_limits[key][0] let vmax = range_limits[key][1] if (lowerlim !== null) {{ vmin = lowerlim}} if (upperlim !== null) {{ vmax = upperlim}} const span = vmax-vmin const lower = vmin-(span*{p0}) const upper = vmax+(span*{p1}) return invert ? [upper, lower] : [lower, upper]}} const ref = plot.id const find = (view) => {{ let iterable = view.child_views === undefined ? [] : view.child_views for (const sv of iterable) {{ if (sv.model.id == ref) return sv const obj = find(sv) if (obj !== null) return obj}} return null}} let plot_view = null; for (const root of plot.document.roots()) {{ const root_view = window.Bokeh.index[root.id] if (root_view === undefined) return plot_view = find(root_view) if (plot_view != null) break}} if (plot_view == null) return let range_limits = {{}} for (const dr of plot.data_renderers) {{ const renderer = plot_view.renderer_view(dr) const glyph_view = renderer.glyph_view let [vmin, vmax] = [Infinity, -Infinity] let y_range_name = renderer.model.y_range_name if (!renderer.glyph.model.tags.includes('no_apply_ranges')) {{ const index = glyph_view.index.index for (let pos = 0; pos < index._boxes.length - 4; pos += 4) {{ const [x0, y0, x1, y1] = index._boxes.slice(pos, pos+4) if ({odim}0 > plot.{odim}_range.start && {odim}1 < plot.{odim}_range.end) {{ vmin = Math.min(vmin, {dim}0) vmax = Math.max(vmax, {dim}1)}}}}}} if (y_range_name) {{ range_limits[y_range_name] = [vmin, vmax]}}}} let range_tags_extras = plot.{dim}_range.tags[1] if (range_tags_extras['autorange']) {{ let lowerlim = range_tags_extras['y-lowerlim'] ?? null let upperlim = range_tags_extras['y-upperlim'] ?? null let [start, end] = get_padded_range('default', lowerlim, upperlim, range_tags_extras['invert_yaxis']) if ((start != end) && window.Number.isFinite(start) && window.Number.isFinite(end)) {{ plot.{dim}_range.setv({{start, end}})}}}} for (let key in plot.extra_{dim}_ranges) {{ const extra_range = plot.extra_{dim}_ranges[key] let range_tags_extras = extra_range.tags[1] let lowerlim = range_tags_extras['y-lowerlim'] ?? null let upperlim = range_tags_extras['y-upperlim'] ?? null if (range_tags_extras['autorange']) {{ let [start, end] = get_padded_range(key, lowerlim, upperlim, range_tags_extras['invert_yaxis']) if ((start != end) && window.Number.isFinite(start) && window.Number.isFinite(end)) {{ extra_range.setv({{start, end}})}}}}}}}} // The plot changes will not propagate to the glyph until // after the data change event has occurred. setTimeout(cb, 0); """,args={'plot':self.state})self.state.js_on_event('rangesupdate',callback)self._js_on_data_callbacks.append(callback)def_categorize_data(self,data,cols,dims):""" Transforms non-string or integer types in datasource if the axis to be plotted on is categorical. Accepts the column data source data, the columns corresponding to the axes and the dimensions for each axis, changing the data inplace. """ifself.invert_axes:cols=cols[::-1]dims=dims[:2][::-1]ranges=[self.handles[f'{ax}_range']foraxin'xy']fori,colinenumerate(cols):column=data[col]if(isinstance(ranges[i],FactorRange)and(isinstance(column,list)orcolumn.dtype.kindnotin'SU')):data[col]=[dims[i].pprint_value(v)forvincolumn]
[docs]defget_aspect(self,xspan,yspan):""" Computes the aspect ratio of the plot """if'plot'inself.handlesandself.state.frame_widthandself.state.frame_height:returnself.state.frame_width/self.state.frame_heightelifself.data_aspect:return(yspan/xspan)*self.data_aspectelifself.aspect=='equal':returnyspan/xspanelifself.aspect=='square':return1elifself.aspectisnotNone:returnself.aspectelifself.widthisnotNoneandself.heightisnotNone:returnself.width/self.heightelse:return1
def_get_dimension_factors(self,element,ranges,dimension):ifdimension.values:values=dimension.valueselif'factors'inranges.get(dimension.name,{}):values=ranges[dimension.name]['factors']else:values=element.dimension_values(dimension,False)values=np.asarray(values)ifnotself._allow_implicit_categories:values=valuesifvalues.dtype.kindin'SU'else[]return[vifvalues.dtype.kindin'SU'elsedimension.pprint_value(v)forvinvalues]def_get_factors(self,element,ranges):""" Get factors for categorical axes. """xdim,ydim=element.dimensions()[:2]xvals=self._get_dimension_factors(element,ranges,xdim)yvals=self._get_dimension_factors(element,ranges,ydim)coords=(xvals,yvals)ifself.invert_axes:coords=coords[::-1]returncoordsdef_process_legend(self):""" Disables legends if show_legend is disabled. """forlinself.handles['plot'].legend:l.items[:]=[]l.border_line_alpha=0l.background_fill_alpha=0def_init_glyph(self,plot,mapping,properties):""" Returns a Bokeh glyph object. """mapping['tags']=['apply_ranges'ifself.apply_rangeselse'no_apply_ranges']properties=mpl_to_bokeh(properties)plot_method=self._plot_methods.get('batched'ifself.batchedelse'single')ifisinstance(plot_method,tuple):# Handle alternative plot method for flipped axesplot_method=plot_method[int(self.invert_axes)]if'legend_field'inpropertiesand'legend_label'inproperties:delproperties['legend_label']ifself.handles['x_range'].nameinplot.extra_x_rangesandnotself.subcoordinate_y:properties['x_range_name']=self.handles['x_range'].nameifself.handles['y_range'].nameinplot.extra_y_rangesandnotself.subcoordinate_y:properties['y_range_name']=self.handles['y_range'].nameif"name"notinproperties:properties["name"]=properties.get("legend_label")orproperties.get("legend_field")ifself._subcoord_overlaid:y_source_range=self.handles['y_range']ifisinstance(self.subcoordinate_y,bool):center=y_source_range.tags[1]['subcoordinate_y']offset=self.subcoordinate_scale/2.ytarget_range=dict(start=center-offset,end=center+offset)else:ytarget_range=dict(start=self.subcoordinate_y[0],end=self.subcoordinate_y[1])plot=plot.subplot(x_source=plot.x_range,x_target=plot.x_range,y_source=y_source_range,y_target=Range1d(**ytarget_range),)renderer=getattr(plot,plot_method)(**dict(properties,**mapping))returnrenderer,renderer.glyphdef_element_transform(self,transform,element,ranges):returntransform.apply(element,ranges=ranges,flat=True)def_apply_transforms(self,element,data,ranges,style,group=None):new_style=dict(style)prefix=group+'_'ifgroupelse''fork,vindict(style).items():ifisinstance(v,str):ifvalidate(k,v)==True:continueelifvinelement:v=dim(element.get_dimension(v))elifisinstance(element,Graph)andvinelement.nodes:v=dim(element.nodes.get_dimension(v))elifany(d==vfordinself.overlay_dims):v=dim(next(dfordinself.overlay_dimsifd==v))if(notisinstance(v,dim)or(groupisnotNoneandnotk.startswith(group))):continueelif(notv.applies(element)andv.dimensionnotinself.overlay_dims):new_style.pop(k)self.param.warning(f'Specified {k} dim transform {v!r} could not be applied, ''as not all dimensions could be resolved.')continueifv.dimensioninself.overlay_dims:ds=Dataset({d.name:vford,vinself.overlay_dims.items()},list(self.overlay_dims))val=v.apply(ds,ranges=ranges,flat=True)[0]else:val=self._element_transform(v,element,ranges)if(notutil.isscalar(val)andlen(util.unique_array(val))==1and(('color'notinkorvalidate('color',val))orkinself._nonvectorized_styles)):val=val[0]ifnotutil.isscalar(val):ifkinself._nonvectorized_styles:element=type(element).__name__raiseValueError('Mapping a dimension to the "{style}" ''style option is not supported by the ''{element} element using the {backend} ''backend. To map the "{dim}" dimension ''to the {style} use a groupby operation ''to overlay your data along the dimension.'.format(style=k,dim=v.dimension,element=element,backend=self.renderer.backend))elifdataandlen(val)!=len(next(iter(data.values()))):ifisinstance(element,VectorField):val=np.tile(val,3)elifisinstance(element,Path)andnotisinstance(element,Contours):val=val[:-1]else:continueifk=='angle':val=np.deg2rad(val)elifk.endswith('font_size'):ifutil.isscalar(val)andisinstance(val,int):val=str(v)+'pt'elifisinstance(val,np.ndarray)andval.dtype.kindin'ifu':val=[str(int(s))+'pt'forsinval]ifutil.isscalar(val):key=valelse:# Node marker does not handle {'field': ...}key=kifk=='node_marker'else{'field':k}data[k]=val# If color is not valid colorspec add colormappernumeric=isinstance(val,util.arraylike_types)andval.dtype.kindin'uifMmb'colormap=style.get(prefix+'cmap')if('color'inkandisinstance(val,util.arraylike_types)and(numericornotvalidate('color',val)orisinstance(colormap,dict))):kwargs={}ifval.dtype.kindnotin'ifMu':range_key=dim_range_key(v)ifrange_keyinrangesand'factors'inranges[range_key]:factors=ranges[range_key]['factors']else:factors=util.unique_array(val)ifisinstance(val,util.arraylike_types)andval.dtype.kind=='b':factors=factors.astype(str)kwargs['factors']=factorscmapper=self._get_colormapper(v,element,ranges,dict(style),name=k+'_color_mapper',group=group,**kwargs)field=kcategorical=isinstance(cmapper,CategoricalColorMapper)ifcategorical:ifval.dtype.kindin'ifMub':field=k+'_str__'ifv.dimensioninelement:formatter=element.get_dimension(v.dimension).pprint_valueelse:formatter=strdata[field]=[formatter(d)fordinval]ifgetattr(self,'show_legend',False):legend_labels=getattr(self,'legend_labels',False)iflegend_labels:label_field=f'_{field}_labels'data[label_field]=[legend_labels.get(v,v)forvinval]new_style['legend_field']=label_fieldelse:new_style['legend_field']=fieldkey={'field':field,'transform':cmapper}new_style[k]=key# Process color/alpha styles and expand to fill/line styleforstyle,valinlist(new_style.items()):forsin('alpha','color'):ifprefix+s!=styleorstylenotindataorvalidate(s,val,True):continuesupports_fill=any(o.startswith(prefix+'fill')and(prefix!='edge_'orgetattr(self,'filled',True))foroinself.style_opts)forpprefixin[p+'_'forpinproperty_prefixes]+['']:fill_key=prefix+pprefix+'fill_'+sfill_style=new_style.get(fill_key)# Do not override custom nonselection/muted alphaif((pprefixin('nonselection_','muted_')ands=='alpha')orfill_keynotinself.style_opts):continue# Override empty and non-vectorized fill_style if not hover stylehover=pprefix=='hover_'if((fill_styleisNoneor(validate(s,fill_style,True)andnothover))andsupports_fill):new_style[fill_key]=valline_key=prefix+pprefix+'line_'+sline_style=new_style.get(line_key)# If glyph has fill and line style is set overriding line colorifsupports_fillandline_styleisnotNone:continue# If glyph does not support fill override non-vectorized line_colorif((line_styleisnotNoneand(validate(s,line_style)andnothover))or(line_styleisNoneandnotsupports_fill)):new_style[line_key]=valreturnnew_styledef_glyph_properties(self,plot,element,source,ranges,style,group=None):properties=dict(style,source=source)ifself.show_legend:ifself.overlay_dims:legend=', '.join([d.pprint_value(v,print_unit=True)ford,vinself.overlay_dims.items()])else:legend=element.labeliflegendandself.overlaid:properties['legend_label']=legendreturnpropertiesdef_filter_properties(self,properties,glyph_type,allowed):glyph_props=dict(properties)forgtypein((glyph_type,'')ifglyph_typeelse('',)):forpropin('color','alpha'):glyph_prop=properties.get(gtype+prop)ifglyph_propisnotNoneand('line_'+propnotinglyph_propsorgtype):glyph_props['line_'+prop]=glyph_propifglyph_propisnotNoneand('fill_'+propnotinglyph_propsorgtype):glyph_props['fill_'+prop]=glyph_propprops={k[len(gtype):]:vfork,vinglyph_props.items()ifk.startswith(gtype)}ifself.batched:glyph_props=dict(props,**glyph_props)else:glyph_props.update(props)return{k:vfork,vinglyph_props.items()ifkinallowed}def_update_glyph(self,renderer,properties,mapping,glyph,source,data):allowed_properties=glyph.properties()properties=mpl_to_bokeh(properties)merged=dict(properties,**mapping)legend_props=('legend_field','legend_label')forlpinlegend_props:legend=merged.pop(lp,None)iflegendisnotNone:breakcolumns=list(source.data.keys())glyph_updates=[]forglyph_typein('','selection_','nonselection_','hover_','muted_'):ifrenderer:glyph=getattr(renderer,glyph_type+'glyph',None)ifglyph=='auto':base_glyph=renderer.glyphprops=base_glyph.properties_with_values()glyph=type(base_glyph)(**{k:vfork,vinprops.items()ifnotprop_is_none(v)})setattr(renderer,glyph_type+'glyph',glyph)ifnotglyphor(notrendererandglyph_type):continuefiltered=self._filter_properties(merged,glyph_type,allowed_properties)# Ensure that data is populated before updating glyphdataspecs=glyph.dataspecs()forspecindataspecs:new_spec=property_to_dict(filtered.get(spec))old_spec=property_to_dict(getattr(glyph,spec))new_field=new_spec.get('field')ifisinstance(new_spec,dict)elsenew_specold_field=old_spec.get('field')ifisinstance(old_spec,dict)elseold_specif(dataisNone)or(new_fieldnotindataornew_fieldinsource.dataornew_field==old_field):continuecolumns.append(new_field)glyph_updates.append((glyph,filtered))# If a dataspec has changed and the CDS.data will be replaced# the GlyphRenderer will not find the column, therefore we# craft an event which will make the column available.cds_replace=TrueifdataisNoneelsecds_column_replace(source,data)ifnotcds_replace:ifnotself.static_source:self._update_datasource(source,data)ifhasattr(self,'selected')andself.selectedisnotNone:self._update_selected(source)elifself.document:server=self.renderer.mode=='server'withhold_policy(self.document,'collect',server=server):empty_data={c:[]forcincolumns}event=ModelChangedEvent(document=self.document,model=source,attr='data',new=empty_data,setter='empty')self.document.callbacks._held_events.append(event)iflegendisnotNone:forleginself.state.legend:foriteminleg.items:ifrendererinitem.renderers:ifisinstance(legend,dict):label=legendeliflp!='legend':prop='value'if'label'inlpelse'field'label={prop:legend}elifisinstance(item.label,dict):label={next(iter(item.label)):legend}else:label={'value':legend}item.label=labelforglyph,updateinglyph_updates:glyph.update(**update)ifdataisnotNoneandcds_replaceandnotself.static_source:self._update_datasource(source,data)def_postprocess_hover(self,renderer,source):""" Attaches renderer to hover tool and processes tooltips to ensure datetime data is displayed correctly. """hover=self.handles.get('hover')ifhoverisNone:returnifnotisinstance(hover.tooltips,str)and'hv_created'inhover.tags:fork,valuesinsource.data.items():key='@{%s}'%kif((len(values)andisinstance(values[0],util.datetime_types))or(len(values)andisinstance(values[0],np.ndarray)andvalues[0].dtype.kind=='M')):hover.tooltips=[(l,f+'{%F %T}'iff==keyelsef)forl,finhover.tooltips]hover.formatters[key]="datetime"ifhover.renderers=='auto':hover.renderers=[]ifrenderernotinhover.renderers:hover.renderers.append(renderer)def_init_glyphs(self,plot,element,ranges,source):style_element=element.lastifself.batchedelseelement# Get data and initialize data sourceifself.batched:current_id=tuple(element.traverse(lambdax:x._plot_id,[Element]))data,mapping,style=self.get_batched_data(element,ranges)else:style=self.style[self.cyclic_index]data,mapping,style=self.get_data(element,ranges,style)current_id=element._plot_idwithabbreviated_exception():style=self._apply_transforms(element,data,ranges,style)ifsourceisNone:source=self._init_datasource(data)self.handles['previous_id']=current_idself.handles['source']=self.handles['cds']=sourceself.handles['selected']=source.selectedproperties=self._glyph_properties(plot,style_element,source,ranges,style)if'legend_label'inpropertiesand'legend_field'inmapping:mapping.pop('legend_field')withabbreviated_exception():renderer,glyph=self._init_glyph(plot,mapping,properties)self.handles['glyph']=glyphifisinstance(renderer,Renderer):self.handles['glyph_renderer']=rendererself._postprocess_hover(renderer,source)# Update plot, source and glyphwithabbreviated_exception():self._update_glyph(renderer,properties,mapping,glyph,source,source.data)def_find_axes(self,plot,element):""" Looks up the axes and plot ranges given the plot and an element. """axis_dims=self._get_axis_dims(element)[:2]x,y=axis_dims[::-1]ifself.invert_axeselseaxis_dimsifisinstance(x,Dimension)andx.nameinplot.extra_x_ranges:x_range=plot.extra_x_ranges[x.name]xaxes=[xaxisforxaxisinplot.xaxisifxaxis.x_range_name==x.name]x_axis=(xaxesifxaxeselseplot.xaxis)[0]else:x_range=plot.x_rangex_axis=plot.xaxis[0]ifisinstance(y,Dimension)andy.nameinplot.extra_y_ranges:y_range=plot.extra_y_ranges[y.name]yaxes=[yaxisforyaxisinplot.yaxisifyaxis.y_range_name==y.name]y_axis=(yaxesifyaxeselseplot.yaxis)[0]else:y_range=plot.y_rangey_axis=plot.yaxis[0]return(x_axis,y_axis),(x_range,y_range)
[docs]definitialize_plot(self,ranges=None,plot=None,plots=None,source=None):""" Initializes a new plot object with the last available frame. """# Get element key and ranges for frameifself.batched:element=[elforelinself.hmap.data.values()ifel][-1]else:element=self.hmap.lastkey=util.wrap_tuple(self.hmap.last_key)ranges=self.compute_ranges(self.hmap,key,ranges)self.current_ranges=rangesself.current_frame=elementself.current_key=keystyle_element=element.lastifself.batchedelseelementranges=util.match_spec(style_element,ranges)# Initialize plot, source and glyphifplotisNone:plot=self._init_plot(key,style_element,ranges=ranges,plots=plots)self._populate_axis_handles(plot)else:axes,plot_ranges=self._find_axes(plot,element)self.handles['xaxis'],self.handles['yaxis']=axesself.handles['x_range'],self.handles['y_range']=plot_rangesifself._subcoord_overlaid:ifstyle_element.labelinplot.extra_y_ranges:self.handles['y_range']=plot.extra_y_ranges.pop(style_element.label)self.handles['plot']=plotifself.autorange:self._setup_autorange()self._init_glyphs(plot,element,ranges,source)ifnotself.overlaid:self._update_plot(key,plot,style_element)self._update_ranges(style_element,ranges)forcbinself.callbacks:cb.initialize()ifself.top_level:self.init_links()ifnotself.overlaid:self._set_active_tools(plot)self._process_legend()self._setup_data_callbacks(plot)self._execute_hooks(element)self.drawn=Truereturnplot
def_setup_data_callbacks(self,plot):ifnotself._js_on_data_callbacks:returnforrendererinplot.select({'type':GlyphRenderer}):cds=renderer.data_sourceforcbinself._js_on_data_callbacks:ifcbnotincds.js_property_callbacks.get('change:data',[]):cds.js_on_change('data',cb)def_update_glyphs(self,element,ranges,style):plot=self.handles['plot']glyph=self.handles.get('glyph')source=self.handles['source']mapping={}# Cache frame object id to skip updating data if unchangedprevious_id=self.handles.get('previous_id',None)ifself.batched:current_id=tuple(element.traverse(lambdax:x._plot_id,[Element]))else:current_id=element._plot_idself.handles['previous_id']=current_idself.static_source=(self.dynamicand(current_id==previous_id))ifself.batched:data,mapping,style=self.get_batched_data(element,ranges)else:data,mapping,style=self.get_data(element,ranges,style)# Include old data if source staticifself.static_source:fork,vinsource.data.items():ifknotindata:data[k]=velifnotlen(data[k])andlen(source.data):data[k]=source.data[k]withabbreviated_exception():style=self._apply_transforms(element,data,ranges,style)ifglyph:properties=self._glyph_properties(plot,element,source,ranges,style)renderer=self.handles.get('glyph_renderer')if'visible'instyleandhasattr(renderer,'visible'):renderer.visible=style['visible']withabbreviated_exception():self._update_glyph(renderer,properties,mapping,glyph,source,data)elifnotself.static_source:self._update_datasource(source,data)def_reset_ranges(self):""" Resets RangeXY streams if norm option is set to framewise """# Skipping conditional to temporarily revert fix (see https://github.com/holoviz/holoviews/issues/4396)# This fix caused PlotSize change events to rerender# rasterized/datashaded with the full extents which was wrongifself.overlaidorTrue:returnforel,callbacksinself.traverse(lambdax:(x.current_frame,x.callbacks)):ifelisNone:continueforcallbackincallbacks:norm=self.lookup_options(el,'norm').optionsifnorm.get('framewise'):forsincallback.streams:ifisinstance(s,RangeXY)andnots._triggering:s.reset()
[docs]defupdate_frame(self,key,ranges=None,plot=None,element=None):""" Updates an existing plot with data corresponding to the key. """self._reset_ranges()reused=isinstance(self.hmap,DynamicMap)and(self.overlaidorself.batched)self.prev_frame=self.current_frameifnotreusedandelementisNone:element=self._get_frame(key)elifelementisnotNone:self.current_key=keyself.current_frame=elementrenderer=self.handles.get('glyph_renderer',None)glyph=self.handles.get('glyph',None)visible=elementisnotNoneifhasattr(renderer,'visible'):renderer.visible=visibleifhasattr(glyph,'visible'):glyph.visible=visibleif((self.batchedandnotelement)orelementisNoneor(notself.dynamicandself.static)or(self.streamingandself.streaming[0].dataisself.current_frame.dataandnotself.streaming[0]._triggering)):returnifself.batched:style_element=element.lastmax_cycles=Noneelse:style_element=elementmax_cycles=self.style._max_cyclesstyle=self.lookup_options(style_element,'style')self.style=style.max_cycles(max_cycles)ifmax_cycleselsestyleifnotself.overlaid:ranges=self.compute_ranges(self.hmap,key,ranges)else:self.ranges.update(ranges)self.param.update(**self.lookup_options(style_element,'plot').options)ranges=util.match_spec(style_element,ranges)self.current_ranges=rangesplot=self.handles['plot']ifnotself.overlaid:self._update_ranges(style_element,ranges)self._update_plot(key,plot,style_element)self._set_active_tools(plot)self._setup_data_callbacks(plot)self._updated=Trueif'hover'inself.handles:self._update_hover(element)if'cds'inself.handles:cds=self.handles['cds']self._postprocess_hover(renderer,cds)self._update_glyphs(element,ranges,self.style[self.cyclic_index])self._execute_hooks(element)
[docs]defmodel_changed(self,model):""" Determines if the bokeh model was just changed on the frontend. Useful to suppress boomeranging events, e.g. when the frontend just sent an update to the x_range this should not trigger an update on the backend. """callbacks=[cbforcbsinself.traverse(lambdax:x.callbacks)forcbincbs]stream_metadata=[stream._metadataforcbincallbacksforstreamincb.streamsifstream._metadata]returnany(md['id']==model.ref['id']formodelsinstream_metadataformdinmodels.values())
@propertydefframewise(self):""" Property to determine whether the current frame should have framewise normalization enabled. Required for bokeh plotting classes to determine whether to send updated ranges for each frame. """current_frames=[elforfinself.traverse(lambdax:x.current_frame)forelin(f.traverse(lambdax:x,[Element])iffelse[])]current_frames=util.unique_iterator(current_frames)returnany(self.lookup_options(frame,'norm').options.get('framewise')forframeincurrent_frames)
[docs]classCompositeElementPlot(ElementPlot):""" A CompositeElementPlot is an Element plot type that coordinates drawing of multiple glyphs. """# Mapping between glyph names and style groups_style_groups={}# Defines the order in which glyphs are drawn, defined by glyph name_draw_order=[]def_init_glyphs(self,plot,element,ranges,source,data=None,mapping=None,style=None):# Get data and initialize data sourceifNonein(data,mapping):style=self.style[self.cyclic_index]data,mapping,style=self.get_data(element,ranges,style)keys=glyph_order(dict(data,**mapping),self._draw_order)source_cache={}current_id=element._plot_idself.handles['previous_id']=current_idforkeyinkeys:style_group=self._style_groups.get('_'.join(key.split('_')[:-1]))group_style=dict(style)ds_data=data.get(key,{})withabbreviated_exception():group_style=self._apply_transforms(element,ds_data,ranges,group_style,style_group)ifid(ds_data)insource_cache:source=source_cache[id(ds_data)]else:source=self._init_datasource(ds_data)source_cache[id(ds_data)]=sourceself.handles[key+'_source']=sourceproperties=self._glyph_properties(plot,element,source,ranges,group_style,style_group)properties=self._process_properties(key,properties,mapping.get(key,{}))withabbreviated_exception():renderer,glyph=self._init_glyph(plot,mapping.get(key,{}),properties,key)self.handles[key+'_glyph']=glyphifisinstance(renderer,Renderer):self.handles[key+'_glyph_renderer']=rendererself._postprocess_hover(renderer,source)# Update plot, source and glyphwithabbreviated_exception():self._update_glyph(renderer,properties,mapping.get(key,{}),glyph,source,source.data)ifgetattr(self,'colorbar',False):fork,vinlist(self.handles.items()):ifnotk.endswith('color_mapper'):continueself._draw_colorbar(plot,v,k.replace('color_mapper',''))def_process_properties(self,key,properties,mapping):key='_'.join(key.split('_')[:-1])if'_'inkeyelsekeystyle_group=self._style_groups[key]group_props={}fork,vinproperties.items():ifkinself.style_opts:group=k.split('_')[0]ifgroup==style_group:ifkinmapping:v=mapping[k]k='_'.join(k.split('_')[1:])else:continuegroup_props[k]=vreturngroup_propsdef_update_glyphs(self,element,ranges,style):plot=self.handles['plot']# Cache frame object id to skip updating data if unchangedprevious_id=self.handles.get('previous_id',None)ifself.batched:current_id=tuple(element.traverse(lambdax:x._plot_id,[Element]))else:current_id=element._plot_idself.handles['previous_id']=current_idself.static_source=(self.dynamicand(current_id==previous_id))data,mapping,style=self.get_data(element,ranges,style)keys=glyph_order(dict(data,**mapping),self._draw_order)forkeyinkeys:gdata=data.get(key)source=self.handles[key+'_source']glyph=self.handles.get(key+'_glyph')ifglyph:group_style=dict(style)style_group=self._style_groups.get('_'.join(key.split('_')[:-1]))withabbreviated_exception():group_style=self._apply_transforms(element,gdata,ranges,group_style,style_group)properties=self._glyph_properties(plot,element,source,ranges,group_style,style_group)properties=self._process_properties(key,properties,mapping[key])renderer=self.handles.get(key+'_glyph_renderer')withabbreviated_exception():self._update_glyph(renderer,properties,mapping[key],glyph,source,gdata)elifnotself.static_sourceandgdataisnotNone:self._update_datasource(source,gdata)def_init_glyph(self,plot,mapping,properties,key):""" Returns a Bokeh glyph object. """properties=mpl_to_bokeh(properties)plot_method='_'.join(key.split('_')[:-1])renderer=getattr(plot,plot_method)(**dict(properties,**mapping))returnrenderer,renderer.glyph
[docs]classColorbarPlot(ElementPlot):""" ColorbarPlot provides methods to create colormappers and colorbar models which can be added to a glyph. Additionally it provides parameters to control the position and other styling options of the colorbar. The default colorbar_position options are defined by the colorbar_specs, but may be overridden by the colorbar_opts. """colorbar_specs={'right':{'pos':'right','opts':{'location':(0,0)}},'left':{'pos':'left','opts':{'location':(0,0)}},'bottom':{'pos':'below','opts':{'location':(0,0),'orientation':'horizontal'}},'top':{'pos':'above','opts':{'location':(0,0),'orientation':'horizontal'}},'top_right':{'pos':'center','opts':{'location':'top_right'}},'top_left':{'pos':'center','opts':{'location':'top_left'}},'bottom_left':{'pos':'center','opts':{'location':'bottom_left','orientation':'horizontal'}},'bottom_right':{'pos':'center','opts':{'location':'bottom_right','orientation':'horizontal'}}}color_levels=param.ClassSelector(default=None,class_=(int,list,range),doc=""" Number of discrete colors to use when colormapping or a set of color intervals defining the range of values to map each color to.""")cformatter=param.ClassSelector(default=None,class_=(str,TickFormatter,FunctionType),doc=""" Formatter for ticks along the colorbar axis.""")clabel=param.String(default=None,doc=""" An explicit override of the color bar label. If set, takes precedence over the title key in colorbar_opts.""")clim=param.Tuple(default=(np.nan,np.nan),length=2,doc=""" User-specified colorbar axis range limits for the plot, as a tuple (low,high). If specified, takes precedence over data and dimension ranges.""")clim_percentile=param.ClassSelector(default=False,class_=(int,float,bool),doc=""" Percentile value to compute colorscale robust to outliers. If True, uses 2nd and 98th percentile; otherwise uses the specified numerical percentile value.""")cnorm=param.ObjectSelector(default='linear',objects=['linear','log','eq_hist'],doc=""" Color normalization to be applied during colormapping.""")colorbar=param.Boolean(default=False,doc=""" Whether to display a colorbar.""")colorbar_position=param.ObjectSelector(objects=list(colorbar_specs),default="right",doc=""" Allows selecting between a number of predefined colorbar position options. The predefined options may be customized in the colorbar_specs class attribute.""")colorbar_opts=param.Dict(default={},doc=""" Allows setting specific styling options for the colorbar overriding the options defined in the colorbar_specs class attribute. Includes location, orientation, height, width, scale_alpha, title, title_props, margin, padding, background_fill_color and more.""")clipping_colors=param.Dict(default={},doc=""" Dictionary to specify colors for clipped values, allows setting color for NaN values and for values above and below the min and max value. The min, max or NaN color may specify an RGB(A) color as a color hex string of the form #FFFFFF or #FFFFFFFF or a length 3 or length 4 tuple specifying values in the range 0-1 or a named HTML color.""")logz=param.Boolean(default=False,doc=""" Whether to apply log scaling to the z-axis.""")rescale_discrete_levels=param.Boolean(default=True,doc=""" If ``cnorm='eq_hist`` and there are only a few discrete values, then ``rescale_discrete_levels=True`` decreases the lower limit of the autoranged span so that the values are rendering towards the (more visible) top of the palette, thus avoiding washout of the lower values. Has no effect if ``cnorm!=`eq_hist``.""")symmetric=param.Boolean(default=False,doc=""" Whether to make the colormap symmetric around zero.""")_colorbar_defaults=dict(bar_line_color='black',label_standoff=8,major_tick_line_color='black')_default_nan='#8b8b8b'_nonvectorized_styles=base_properties+['cmap','palette']def_draw_colorbar(self,plot,color_mapper,prefix=''):ifCategoricalColorMapperandisinstance(color_mapper,CategoricalColorMapper):returnifisinstance(color_mapper,EqHistColorMapper):ticker=BinnedTicker(mapper=color_mapper)elifisinstance(color_mapper,LogColorMapper)andcolor_mapper.low>0:ticker=LogTicker()else:ticker=BasicTicker()cbar_opts=dict(self.colorbar_specs[self.colorbar_position])# Check if there is a colorbar in the same positionpos=cbar_opts['pos']ifany(isinstance(model,ColorBar)formodelingetattr(plot,pos,[])):returnifself.clabel:self.colorbar_opts.update({'title':self.clabel})ifself.cformatterisnotNone:self.colorbar_opts.update({'formatter':wrap_formatter(self.cformatter,'c')})fortkin['cticks','ticks']:ticksize=self._fontsize(tk,common=False).get('fontsize')ifticksizeisnotNone:self.colorbar_opts.update({'major_label_text_font_size':ticksize})breakforlbin['clabel','labels']:labelsize=self._fontsize(lb,common=False).get('fontsize')iflabelsizeisnotNone:self.colorbar_opts.update({'title_text_font_size':labelsize})breakopts=dict(cbar_opts['opts'],color_mapper=color_mapper,ticker=ticker,**self._colorbar_defaults)color_bar=ColorBar(**dict(opts,**self.colorbar_opts))plot.add_layout(color_bar,pos)self.handles[prefix+'colorbar']=color_bardef_get_colormapper(self,eldim,element,ranges,style,factors=None,colors=None,group=None,name='color_mapper'):# The initial colormapper instance is cached the first time# and then only updatedifeldimisNoneandcolorsisNone:returnNonedim_name=dim_range_key(eldim)# Attempt to find matching colormapper on the adjoined plotifself.adjoined:cmappers=self.adjoined.traverse(lambdax:(x.handles.get('color_dim'),x.handles.get(name),[vforvinx.handles.values()ifisinstance(v,ColorMapper)]))cmappers=[(cmap,mappers)forcdim,cmap,mappersincmappersifcdim==eldim]ifcmappers:cmapper,mappers=cmappers[0]ifnotcmapper:ifmappersandmappers[0]:cmapper=mappers[0]else:returnNoneself.handles['color_mapper']=cmapperreturncmapperelse:returnNonencolors=NoneiffactorsisNoneelselen(factors)ifeldim:# check if there's an actual value (not np.nan)ifall(util.isfinite(cl)forclinself.clim):low,high=self.climelifdim_nameinranges:ifself.clim_percentileand'robust'inranges[dim_name]:low,high=ranges[dim_name]['robust']else:low,high=ranges[dim_name]['combined']dlow,dhigh=ranges[dim_name]['data']if(util.is_int(low,int_like=True)andutil.is_int(high,int_like=True)andutil.is_int(dlow)andutil.is_int(dhigh)):low,high=int(low),int(high)elifisinstance(eldim,dim):low,high=np.nan,np.nanelse:low,high=element.range(eldim.name)ifself.symmetric:sym_max=max(abs(low),high)low,high=-sym_max,sym_maxlow=self.clim[0]ifutil.isfinite(self.clim[0])elselowhigh=self.clim[1]ifutil.isfinite(self.clim[1])elsehighelse:low,high=None,Noneprefix=''ifgroupisNoneelsegroup+'_'cmap=colorsorstyle.get(prefix+'cmap',style.get('cmap','viridis'))nan_colors={k:rgba_tuple(v)fork,vinself.clipping_colors.items()}ifisinstance(cmap,dict):factors=list(cmap)palette=[cmap.get(f,nan_colors.get('NaN',self._default_nan))forfinfactors]ifisinstance(eldim,dim):ifeldim.dimensioninelement:formatter=element.get_dimension(eldim.dimension).pprint_valueelse:formatter=strelse:formatter=eldim.pprint_valuefactors=[formatter(f)forfinfactors]else:categorical=ncolorsisnotNoneifisinstance(self.color_levels,int):ncolors=self.color_levelselifisinstance(self.color_levels,list):ncolors=len(self.color_levels)-1ifisinstance(cmap,list)andlen(cmap)!=ncolors:raiseValueError('The number of colors in the colormap ''must match the intervals defined in the ''color_levels, expected %d colors found %d.'%(ncolors,len(cmap)))palette=process_cmap(cmap,ncolors,categorical=categorical)ifisinstance(self.color_levels,list):palette,(low,high)=color_intervals(palette,self.color_levels,clip=(low,high))colormapper,opts=self._get_cmapper_opts(low,high,factors,nan_colors)cmapper=self.handles.get(name)ifcmapperisnotNone:ifcmapper.palette!=palette:cmapper.palette=paletteopts={k:optfork,optinopts.items()ifgetattr(cmapper,k)!=opt}ifopts:cmapper.update(**opts)else:cmapper=colormapper(palette=palette,**opts)self.handles[name]=cmapperself.handles['color_dim']=eldimreturncmapperdef_get_color_data(self,element,ranges,style,name='color',factors=None,colors=None,int_categories=False):data,mapping={},{}cdim=element.get_dimension(self.color_index)color=style.get(name,None)ifcdimand((isinstance(color,str)andcolorinelement)orisinstance(color,dim)):self.param.warning("Cannot declare style mapping for '%s' option and ""declare a color_index; ignoring the color_index."%name)cdim=Noneifnotcdim:returndata,mappingcdata=element.dimension_values(cdim)field=util.dimension_sanitizer(cdim.name)dtypes='iOSU'ifint_categorieselse'OSU'iffactorsisNoneand(isinstance(cdata,list)orcdata.dtype.kindindtypes):range_key=dim_range_key(cdim)ifrange_keyinrangesand'factors'inranges[range_key]:factors=ranges[range_key]['factors']else:factors=util.unique_array(cdata)iffactorsisnotNoneandint_categoriesandcdata.dtype.kind=='i':field+='_str__'cdata=[str(f)forfincdata]factors=[str(f)forfinfactors]mapper=self._get_colormapper(cdim,element,ranges,style,factors,colors)iffactorsisNoneandisinstance(mapper,CategoricalColorMapper):field+='_str__'cdata=[cdim.pprint_value(c)forcincdata]factors=Truedata[field]=cdataiffactorsisnotNoneandself.show_legend:mapping['legend_field']=fieldmapping[name]={'field':field,'transform':mapper}returndata,mappingdef_get_cmapper_opts(self,low,high,factors,colors):iffactorsisNone:opts={}ifself.cnorm=='linear':colormapper=LinearColorMapperifself.cnorm=='log'orself.logz:colormapper=LogColorMapperifutil.is_int(low)andutil.is_int(high)andlow==0:low=1if'min'notincolors:# Make integer 0 be transparentcolors['min']='rgba(0, 0, 0, 0)'elifutil.is_number(low)andlow<=0:self.param.warning("Log color mapper lower bound <= 0 and will not ""render correctly. Ensure you set a positive ""lower bound on the color dimension or using ""the `clim` option.")elifself.cnorm=='eq_hist':colormapper=EqHistColorMapperifbokeh_version>Version('2.4.2'):opts['rescale_discrete_levels']=self.rescale_discrete_levelsifisinstance(low,(bool,np.bool_)):low=int(low)ifisinstance(high,(bool,np.bool_)):high=int(high)# Pad zero-range to avoid breaking colorbar (as of bokeh 1.0.4)iflow==high:offset=self.default_span/2low-=offsethigh+=offsetifutil.isfinite(low):opts['low']=lowifutil.isfinite(high):opts['high']=highcolor_opts=[('NaN','nan_color'),('max','high_color'),('min','low_color')]opts.update({opt:colors[name]forname,optincolor_optsifnameincolors})else:colormapper=CategoricalColorMapperfactors=decode_bytes(factors)opts=dict(factors=list(factors))if'NaN'incolors:opts['nan_color']=colors['NaN']returncolormapper,optsdef_init_glyph(self,plot,mapping,properties):""" Returns a Bokeh glyph object and optionally creates a colorbar. """ret=super()._init_glyph(plot,mapping,properties)ifself.colorbar:fork,vinlist(self.handles.items()):ifnotk.endswith('color_mapper'):continueself._draw_colorbar(plot,v,k.replace('color_mapper',''))returnret
[docs]classLegendPlot(ElementPlot):legend_cols=param.Integer(default=0,bounds=(0,None),doc=""" Number of columns for legend.""")legend_labels=param.Dict(default=None,doc=""" Label overrides.""")legend_muted=param.Boolean(default=False,doc=""" Controls whether the legend entries are muted by default.""")legend_offset=param.NumericTuple(default=(0,0),doc=""" If legend is placed outside the axis, this determines the (width, height) offset in pixels from the original position.""")legend_position=param.ObjectSelector(objects=["top_right","top_left","bottom_left","bottom_right",'right','left','top','bottom'],default="top_right",doc=""" Allows selecting between a number of predefined legend position options. The predefined options may be customized in the legend_specs class attribute.""")legend_opts=param.Dict(default={},doc=""" Allows setting specific styling options for the colorbar.""")legend_specs={'right':'right','left':'left','top':'above','bottom':'below'}def_process_legend(self,plot=None):plot=plotorself.handles['plot']ifnotplot.legend:returnlegend=plot.legend[0]cmappers=[cmapperforcmapperinself.handles.values()ifisinstance(cmapper,CategoricalColorMapper)]categorical=bool(cmappers)if((notcategoricalandnotself.overlaidandlen(legend.items)==1)ornotself.show_legend):legend.items[:]=[]else:ifself.legend_cols:plot.legend.nrows=self.legend_colselse:plot.legend.orientation='horizontal'ifself.legend_colselse'vertical'pos=self.legend_positionifposinself.legend_specs:plot.legend[:]=[]legend.location=self.legend_offsetifposin['top','bottom']andnotself.legend_cols:plot.legend.orientation='horizontal'plot.add_layout(legend,self.legend_specs[pos])else:legend.location=pos# Apply muting and misc legend optsforleginplot.legend:leg.update(**self.legend_opts)foriteminleg.items:forrinitem.renderers:r.muted=self.legend_muted
[docs]classAnnotationPlot:""" Mix-in plotting subclass for AnnotationPlots which do not have a legend. """
[docs]classOverlayPlot(GenericOverlayPlot,LegendPlot):tabs=param.Boolean(default=False,doc=""" Whether to display overlaid plots in separate panes""")style_opts=(legend_dimensions+['border_'+pforpinline_properties]+text_properties+['background_fill_color','background_fill_alpha'])multiple_legends=param.Boolean(default=False,doc=""" Whether to split the legend for subplots into multiple legends.""")_propagate_options=['width','height','xaxis','yaxis','labelled','bgcolor','fontsize','invert_axes','show_frame','show_grid','logx','logy','xticks','toolbar','yticks','xrotation','yrotation','lod','border','invert_xaxis','invert_yaxis','sizing_mode','title','title_format','legend_position','legend_offset','legend_cols','gridstyle','legend_muted','padding','xlabel','ylabel','xlim','ylim','zlim','xformatter','yformatter','active_tools','min_height','max_height','min_width','min_height','margin','aspect','data_aspect','frame_width','frame_height','responsive','fontscale','subcoordinate_y','subcoordinate_scale']def__init__(self,overlay,**kwargs):self._multi_y_propagation=self.lookup_options(overlay,'plot').options.get('multi_y',False)super().__init__(overlay,**kwargs)self._multi_y_propagation=False@propertydef_x_range_type(self):forvinself.subplots.values():ifnotisinstance(v._x_range_type,Range1d):returnv._x_range_typereturnself._x_range_type@propertydef_y_range_type(self):forvinself.subplots.values():ifnotisinstance(v._y_range_type,Range1d):returnv._y_range_typereturnself._y_range_typedef_process_legend(self,overlay):plot=self.handles['plot']subplots=self.traverse(lambdax:x,[lambdax:xisnotself])legend_plots=any(pisnotNoneforpinsubplotsifisinstance(p,LegendPlot)andnotisinstance(p,OverlayPlot))non_annotation=[pforpinsubplotsifnotisinstance(p,(AnnotationPlot,OverlayPlot))]if(notself.show_legendorlen(plot.legend)==0or(len(non_annotation)<=1andnot(self.dynamicorlegend_plots))):returnsuper()._process_legend()elifnotplot.legend:returnlegend=plot.legend[0]options={}properties=self.lookup_options(self.hmap.last,'style')[self.cyclic_index]fork,vinproperties.items():ifkinline_propertiesand'line'notink:ksplit=k.split('_')k='_'.join(ksplit[:1]+'line'+ksplit[1:])ifkintext_properties:k='label_'+kifk.startswith('legend_'):k=k[7:]options[k]=vpos=self.legend_positionifposin['top','bottom']andnotself.legend_cols:options['orientation']='horizontal'ifoverlayisnotNoneandoverlay.kdims:title=', '.join([d.labelfordinoverlay.kdims])options['title']=titleoptions.update(self._fontsize('legend','label_text_font_size'))options.update(self._fontsize('legend_title','title_text_font_size'))ifself.legend_cols:options.update({"ncols":self.legend_cols})legend.update(**options)ifposinself.legend_specs:pos=self.legend_specs[pos]else:legend.location=posif'legend_items'notinself.handles:self.handles['legend_items']=[]legend_items=self.handles['legend_items']legend_labels={tuple(sorted(property_to_dict(i.label).items()))ifisinstance(property_to_dict(i.label),dict)elsei.label:iforiinlegend_items}foriteminlegend.items:item_label=property_to_dict(item.label)label=tuple(sorted(item_label.items()))ifisinstance(item_label,dict)elseitem_labelifnotlabelor(isinstance(item_label,dict)andnotitem_label.get('value',True)):continueiflabelinlegend_labels:prev_item=legend_labels[label]prev_item.renderers[:]=list(util.unique_iterator(prev_item.renderers+item.renderers))else:legend_labels[label]=itemlegend_items.append(item)ifitemnotinself.handles['legend_items']:self.handles['legend_items'].append(item)# Ensure that each renderer is only singly referenced by a legend itemfiltered=[]renderers=[]foriteminlegend_items:item.renderers[:]=[rforrinitem.renderersifrnotinrenderers]if(iteminfilteredornotitem.renderersornotany(r.visibleor'hv_legend'inr.tagsforrinitem.renderers)):continueitem_label=property_to_dict(item.label)ifisinstance(item_label,dict)and'value'initem_labelandself.legend_labels:label=item_label['value']item.label={'value':self.legend_labels.get(label,label)}renderers+=item.renderersfiltered.append(item)legend.items[:]=list(util.unique_iterator(filtered))ifself.multiple_legends:remove_legend(plot,legend)properties=legend.properties_with_values(include_defaults=False)legend_group=[]foriteminlegend.items:ifnotisinstance(item.label,dict)or'value'initem.label:legend_group.append(item)continuenew_legend=Legend(**dict(properties,items=[item]))new_legend.location=self.legend_offsetplot.add_layout(new_legend,pos)iflegend_group:new_legend=Legend(**dict(properties,items=legend_group))new_legend.location=self.legend_offsetplot.add_layout(new_legend,pos)legend.items[:]=[]elifposin['above','below','right','left']:remove_legend(plot,legend)legend.location=self.legend_offsetplot.add_layout(legend,pos)# Apply muting and misc legend optsforleginplot.legend:leg.update(**self.legend_opts)foriteminleg.items:forrinitem.renderers:r.muted=self.legend_mutedorr.muteddef_init_tools(self,element,callbacks=None):""" Processes the list of tools to be supplied to the plot. """ifcallbacksisNone:callbacks=[]hover_tools={}init_tools,tool_types=[],[]forkey,subplotinself.subplots.items():el=element.get(key)ifelisnotNone:el_tools=subplot._init_tools(el,self.callbacks)fortoolinel_tools:ifisinstance(tool,str):tool_type=TOOL_TYPES.get(tool)else:tool_type=type(tool)ifisinstance(tool,tools.HoverTool):tooltips=tuple(tool.tooltips)iftool.tooltipselse()iftooltipsinhover_tools:continueelse:hover_tools[tooltips]=tooleliftool_typeintool_types:continueelse:tool_types.append(tool_type)init_tools.append(tool)self.handles['hover_tools']=hover_toolsreturninit_toolsdef_merge_tools(self,subplot):""" Merges tools on the overlay with those on the subplots. """ifself.batchedand'hover'insubplot.handles:self.handles['hover']=subplot.handles['hover']elif'hover'insubplot.handlesand'hover_tools'inself.handles:hover=subplot.handles['hover']ifhover.tooltipsandnotisinstance(hover.tooltips,str):tooltips=tuple((name,spec.replace('{%F %T}',''))forname,specinhover.tooltips)else:tooltips=()tool=self.handles['hover_tools'].get(tooltips)iftool:tool_renderers=[]iftool.renderers=='auto'elsetool.renderershover_renderers=[]ifhover.renderers=='auto'elsehover.renderersrenderers=[rforrintool_renderers+hover_renderersifrisnotNone]tool.renderers=list(util.unique_iterator(renderers))if'hover'notinself.handles:self.handles['hover']=tooldef_get_dimension_factors(self,overlay,ranges,dimension):factors=[]fork,spinself.subplots.items():el=overlay.data.get(k)ifelisNoneornotsp.apply_rangesornotsp._has_axis_dimension(el,dimension):continuedim=el.get_dimension(dimension)elranges=util.match_spec(el,ranges)fs=sp._get_dimension_factors(el,elranges,dim)iflen(fs):factors.append(fs)returnlist(util.unique_iterator(chain(*factors)))def_get_factors(self,overlay,ranges):xfactors,yfactors=[],[]fork,spinself.subplots.items():el=overlay.data.get(k)ifelisnotNone:elranges=util.match_spec(el,ranges)xfs,yfs=sp._get_factors(el,elranges)iflen(xfs):xfactors.append(xfs)iflen(yfs):yfactors.append(yfs)xfactors=list(util.unique_iterator(chain(*xfactors)))yfactors=list(util.unique_iterator(chain(*yfactors)))returnxfactors,yfactorsdef_get_axis_dims(self,element):subplots=list(self.subplots.values())ifsubplots:returnsubplots[0]._get_axis_dims(element)returnsuper()._get_axis_dims(element)
[docs]definitialize_plot(self,ranges=None,plot=None,plots=None):ifself.multi_yandself.subcoordinate_y:raiseValueError('multi_y and subcoordinate_y are not supported together.')ifself.subcoordinate_y:labels=self.hmap.last.traverse(lambdax:x.label,[lambdael:isinstance(el,Element)andel.opts.get('plot').kwargs.get('subcoordinate_y',False)])ifany(notlabelforlabelinlabels):raiseValueError('Every element wrapped in a subcoordinate_y overlay must have ''a label.')iflen(set(labels))==1:raiseValueError('Elements wrapped in a subcoordinate_y overlay must all have ''a unique label.')key=util.wrap_tuple(self.hmap.last_key)nonempty=[(k,el)fork,elinself.hmap.data.items()ifel]ifnotnonempty:raiseSkipRendering('All Overlays empty, cannot initialize plot.')dkey,element=nonempty[-1]ranges=self.compute_ranges(self.hmap,key,ranges)self.tabs=self.tabsorany(isinstance(sp,TablePlot)forspinself.subplots.values())ifplotisNoneandnotself.tabsandnotself.batched:plot=self._init_plot(key,element,ranges=ranges,plots=plots)self._populate_axis_handles(plot)self.handles['plot']=plotifplotandnotself.overlaid:self._update_plot(key,plot,element)self._update_ranges(element,ranges)panels=[]forkey,subplotinself.subplots.items():frame=Noneifself.tabs:subplot.overlaid=Falsechild=subplot.initialize_plot(ranges,plot,plots)ifisinstance(element,CompositeOverlay):# Ensure that all subplots are in the same stateframe=element.get(key,None)subplot.current_frame=framesubplot.current_key=dkeyifself.batched:self.handles['plot']=childifself.tabs:title=subplot._format_title(key,dimensions=False)ifnottitle:title=get_tab_title(key,frame,self.hmap.last)panels.append(TabPanel(child=child,title=title))self._merge_tools(subplot)ifself.tabs:self.handles['plot']=Tabs(tabs=panels,width=self.width,height=self.height,min_width=self.min_width,min_height=self.min_height,max_width=self.max_width,max_height=self.max_height,sizing_mode='fixed')elifnotself.overlaid:self._process_legend(element)self._set_active_tools(plot)self.drawn=Trueself.handles['plots']=plotsif'plot'inself.handlesandnotself.tabs:plot=self.handles['plot']self.handles['xaxis']=plot.xaxis[0]self.handles['yaxis']=plot.yaxis[0]self.handles['x_range']=plot.x_rangeself.handles['y_range']=plot.y_rangeforcbinself.callbacks:cb.initialize()ifself.top_level:self.init_links()self._execute_hooks(element)returnself.handles['plot']
[docs]defupdate_frame(self,key,ranges=None,element=None):""" Update the internal state of the Plot to represent the given key tuple (where integers represent frames). Returns this state. """self._reset_ranges()reused=isinstance(self.hmap,DynamicMap)andself.overlaidself.prev_frame=self.current_frameifnotreusedandelementisNone:element=self._get_frame(key)elifelementisnotNone:self.current_frame=elementself.current_key=keyitems=[]ifelementisNoneelselist(element.data.items())ifisinstance(self.hmap,DynamicMap):range_obj=elementelse:range_obj=self.hmapifelementisnotNone:ranges=self.compute_ranges(range_obj,key,ranges)# Update plot optionsplot_opts=self.lookup_options(element,'plot').optionsinherited=self._traverse_options(element,'plot',self._propagate_options,defaults=False)plot_opts.update(**{k:v[0]fork,vininherited.items()ifknotinplot_opts})self.param.update(**plot_opts)ifnotself.overlaidandnotself.tabsandnotself.batched:self._update_ranges(element,ranges)# Determine which stream (if any) triggered the updatetriggering=[streamforstreaminself.streamsifstream._triggering]fork,subplotinself.subplots.items():el=None# If in Dynamic mode propagate elements to subplotsifisinstance(self.hmap,DynamicMap)andelement:# In batched mode NdOverlay is passed to subplot directlyifself.batched:el=element# If not batched get the Element matching the subplotelifelementisnotNone:idx,spec,exact=self._match_subplot(k,subplot,items,element)ifidxisnotNoneandexact:_,el=items.pop(idx)# Skip updates to subplots when its streams is not one of# the streams that initiated the updateif(triggeringandall(snotintriggeringforsinsubplot.streams)andsubplotnotinself.dynamic_subplots):continuesubplot.update_frame(key,ranges,element=el)ifnotself.batchedandisinstance(self.hmap,DynamicMap)anditems:init_kwargs={'plots':self.handles['plots']}ifnotself.tabs:init_kwargs['plot']=self.handles['plot']self._create_dynamic_subplots(key,items,ranges,**init_kwargs)ifnotself.overlaidandnotself.tabs:self._process_legend(element)ifelementandnotself.overlaidandnotself.tabsandnotself.batched:plot=self.handles['plot']self._update_plot(key,plot,element)self._set_active_tools(plot)self._setup_data_callbacks(plot)self._updated=Trueself._process_legend(element)self._execute_hooks(element)