Source code for holoviews.plotting.mpl.util

import re
import warnings

import numpy as np
from matplotlib import ticker
from matplotlib.transforms import Bbox, TransformedBbox, Affine2D

from ...core.util import basestring, _getargspec
from ...element import Raster, RGB


[docs]def wrap_formatter(formatter): """ Wraps formatting function or string in appropriate matplotlib formatter type. """ if isinstance(formatter, ticker.Formatter): return formatter elif callable(formatter): args = [arg for arg in _getargspec(formatter).args if arg != 'self'] wrapped = formatter if len(args) == 1: def wrapped(val, pos=None): return formatter(val) return ticker.FuncFormatter(wrapped) elif isinstance(formatter, basestring): if re.findall(r"\{(\w+)\}", formatter): return ticker.StrMethodFormatter(formatter) else: return ticker.FormatStrFormatter(formatter)
def unpack_adjoints(ratios): new_ratios = {} offset = 0 for k, (num, ratios) in sorted(ratios.items()): unpacked = [[] for _ in range(num)] for r in ratios: nr = len(r) for i in range(num): unpacked[i].append(r[i] if i < nr else np.nan) for i, r in enumerate(unpacked): new_ratios[k+i+offset] = r offset += num-1 return new_ratios def normalize_ratios(ratios): normalized = {} for i, v in enumerate(zip(*ratios.values())): arr = np.array(v) normalized[i] = arr/float(np.nanmax(arr)) return normalized def compute_ratios(ratios, normalized=True): unpacked = unpack_adjoints(ratios) with warnings.catch_warnings(): warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered') if normalized: unpacked = normalize_ratios(unpacked) sorted_ratios = sorted(unpacked.items()) return np.nanmax(np.vstack([v for _, v in sorted_ratios]), axis=0)
[docs]def axis_overlap(ax1, ax2): """ Tests whether two axes overlap vertically """ b1, t1 = ax1.get_position().intervaly b2, t2 = ax2.get_position().intervaly return t1 > b2 and b1 < t2
[docs]def resolve_rows(rows): """ Recursively iterate over lists of axes merging them by their vertical overlap leaving a list of rows. """ merged_rows = [] for row in rows: overlap = False for mrow in merged_rows: if any(axis_overlap(ax1, ax2) for ax1 in row for ax2 in mrow): mrow += row overlap = True break if not overlap: merged_rows.append(row) if rows == merged_rows: return rows else: return resolve_rows(merged_rows)
[docs]def fix_aspect(fig, nrows, ncols, title=None, extra_artists=[], vspace=0.2, hspace=0.2): """ Calculate heights and widths of axes and adjust the size of the figure to match the aspect. """ fig.canvas.draw() w, h = fig.get_size_inches() # Compute maximum height and width of each row and columns rows = resolve_rows([[ax] for ax in fig.axes]) rs, cs = len(rows), max([len(r) for r in rows]) heights = [[] for i in range(cs)] widths = [[] for i in range(rs)] for r, row in enumerate(rows): for c, ax in enumerate(row): bbox = ax.get_tightbbox(fig.canvas.get_renderer()) heights[c].append(bbox.height) widths[r].append(bbox.width) height = (max([sum(c) for c in heights])) + nrows*vspace*fig.dpi width = (max([sum(r) for r in widths])) + ncols*hspace*fig.dpi # Compute aspect and set new size (in inches) aspect = height/width offset = 0 if title and title.get_text(): offset = title.get_window_extent().height/fig.dpi fig.set_size_inches(w, (w*aspect)+offset) # Redraw and adjust title position if defined fig.canvas.draw() if title and title.get_text(): extra_artists = [a for a in extra_artists if a is not title] bbox = get_tight_bbox(fig, extra_artists) top = bbox.intervaly[1] if title and title.get_text(): title.set_y((top/(w*aspect)))
[docs]def get_tight_bbox(fig, bbox_extra_artists=[], pad=None): """ Compute a tight bounding box around all the artists in the figure. """ renderer = fig.canvas.get_renderer() bbox_inches = fig.get_tightbbox(renderer) bbox_artists = bbox_extra_artists[:] bbox_artists += fig.get_default_bbox_extra_artists() bbox_filtered = [] for a in bbox_artists: bbox = a.get_window_extent(renderer) if isinstance(bbox, tuple): continue if a.get_clip_on(): clip_box = a.get_clip_box() if clip_box is not None: bbox = Bbox.intersection(bbox, clip_box) clip_path = a.get_clip_path() if clip_path is not None and bbox is not None: clip_path = clip_path.get_fully_transformed_path() bbox = Bbox.intersection(bbox, clip_path.get_extents()) if bbox is not None and (bbox.width != 0 or bbox.height != 0): bbox_filtered.append(bbox) if bbox_filtered: _bbox = Bbox.union(bbox_filtered) trans = Affine2D().scale(1.0 / fig.dpi) bbox_extra = TransformedBbox(_bbox, trans) bbox_inches = Bbox.union([bbox_inches, bbox_extra]) return bbox_inches.padded(pad) if pad else bbox_inches
[docs]def get_raster_array(image): """ Return the array data from any Raster or Image type """ if isinstance(image, RGB): rgb = image.rgb data = np.dstack([np.flipud(rgb.dimension_values(d, flat=False)) for d in rgb.vdims]) else: data = image.dimension_values(2, flat=False) if type(image) is Raster: data = data.T else: data = np.flipud(data) return data