Working with large data using datashader

In [1]:
import numpy as np
import holoviews as hv
import datashader as ds
from holoviews.operation.datashader import datashade, shade, dynspread, rasterize
from holoviews.operation import decimate
hv.extension('bokeh','matplotlib')
decimate.max_samples=1000
dynspread.max_px=20
dynspread.threshold=0.5

def random_walk(n, f=5000):
    """Random walk in a 2D space, smoothed with a filter of length f"""
    xs = np.convolve(np.random.normal(0, 0.1, size=n), np.ones(f)/f).cumsum()
    ys = np.convolve(np.random.normal(0, 0.1, size=n), np.ones(f)/f).cumsum()
    xs += 0.1*np.sin(0.1*np.array(range(n-1+f))) # add wobble on x axis
    xs += np.random.normal(0, 0.005, size=n-1+f) # add measurement noise
    ys += np.random.normal(0, 0.005, size=n-1+f)
    return np.column_stack([xs, ys])

def random_cov():
    """Random covariance for use in generating 2D Gaussian distributions"""
    A = np.random.randn(2,2)
    return np.dot(A, A.T)

def time_series(T = 1, N = 100, mu = 0.1, sigma = 0.1, S0 = 20):  
    """Parameterized noisy time series"""
    dt = float(T)/N
    t = np.linspace(0, T, N)
    W = np.random.standard_normal(size = N) 
    W = np.cumsum(W)*np.sqrt(dt) # standard brownian motion
    X = (mu-0.5*sigma**2)*t + sigma*W 
    S = S0*np.exp(X) # geometric brownian motion
    return S