Stocks example

URL: http://bokeh.pydata.org/en/latest/docs/gallery/stocks.html

Most examples work across multiple plotting backends, this example is also available for:

In [1]:
import numpy as np
import pandas as pd
import holoviews as hv
hv.extension('matplotlib')
%output fig='svg' dpi=120

Defining the data

In [2]:
from holoviews.operation.timeseries import rolling
from bokeh.sampledata.stocks import AAPL, GOOG, IBM, MSFT

color_cycle = hv.Cycle(values=['#A6CEE3', '#B2DF8A','#33A02C', '#FB9A99'])

def get_curve(data, label=''):
    df = pd.DataFrame(data)
    df['date'] = df.date.astype('datetime64[ns]')
    return hv.Curve(df, ('date', 'Date'), ('adj_close', 'Price'), label=label).options(color=color_cycle)

hv.Dimension.type_formatters[np.datetime64] = '%Y'

aapl = get_curve(AAPL, label='AAPL')
goog = get_curve(GOOG, label='GOOG')
ibm  = get_curve(IBM, label='IBM')
msft = get_curve(MSFT, label='MSFT')

avg_curve = rolling(aapl, rolling_window=30).relabel('Average')
avg_scatter = hv.Scatter((np.array(AAPL['date'], dtype=np.datetime64), np.array(AAPL['adj_close'])), 
                         ('date', 'Date'), ('adj_close', 'Price'), label='close')

Plot

In [3]:
plot_opts = dict(aspect=1, fig_size=200, legend_position='top_left')
stocks = (aapl * goog * ibm * msft).options(**plot_opts)
appl_stats =  avg_scatter.options(alpha=0.2, s=4, color='darkgrey') * avg_curve.options(color='navy')
stocks + appl_stats.options(**plot_opts)
Out[3]:

Download this notebook from GitHub (right-click to download).