Source code for holoviews.plotting.element

import math
from collections import Counter
from matplotlib import ticker
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt

import numpy as np

import param

from ..core import util
from ..core.options import Store
from ..core import OrderedDict, Element, NdOverlay, Overlay, HoloMap, CompositeOverlay, Element3D
from ..element import Annotation, Table, ItemTable
from ..operation import Compositor
from .plot import Plot


class ElementPlot(Plot):

    apply_ranges = param.Boolean(default=True, doc="""
        Whether to compute the plot bounds from the data itself.""")

    apply_extents = param.Boolean(default=True, doc="""
        Whether to apply extent overrides on the Elements""")

    apply_ticks = param.Boolean(default=True, doc="""
        Whether to apply custom ticks.""")

    aspect = param.Parameter(default='square', doc="""
        The aspect ratio mode of the plot. By default, a plot may
        select its own appropriate aspect ratio but sometimes it may
        be necessary to force a square aspect ratio (e.g. to display
        the plot as an element of a grid). The modes 'auto' and
        'equal' correspond to the axis modes of the same name in
        matplotlib, a numeric value may also be passed.""")

    bgcolor = param.ClassSelector(class_=(str, tuple), default=None, doc="""
        If set bgcolor overrides the background color of the axis.""")

    hidden_labels = param.List(default=[], doc="""
        Accepts a list containing any combination of x, y and z, disabling
        the axes labels (ticks, ticklabels, axis label) without disabling
        the axis entirely.""")

    invert_xaxis = param.Boolean(default=False, doc="""
        Whether to invert the plot x-axis.""")

    invert_yaxis = param.Boolean(default=False, doc="""
        Whether to invert the plot y-axis.""")

    logx = param.Boolean(default=False, doc="""
         Whether to apply log scaling to the x-axis of the Chart.""")

    logy  = param.Boolean(default=False, doc="""
         Whether to apply log scaling to the y-axis of the Chart.""")

    logz  = param.Boolean(default=False, doc="""
         Whether to apply log scaling to the y-axis of the Chart.""")

    orientation = param.ObjectSelector(default='horizontal',
                                       objects=['horizontal', 'vertical'], doc="""
        The orientation of the plot. Note that this parameter may not
        always be respected by all plots but should be respected by
        adjoined plots when appropriate.""")

    show_legend = param.Boolean(default=False, doc="""
        Whether to show legend for the plot.""")

    show_grid = param.Boolean(default=False, doc="""
        Whether to show a Cartesian grid on the plot.""")

    xaxis = param.ObjectSelector(default='bottom',
                                      objects=['top', 'bottom', None], doc="""
        Whether and where to display the xaxis.""")

    yaxis = param.ObjectSelector(default='left',
                                      objects=['left', 'right', None], doc="""
        Whether and where to display the yaxis.""")

    zaxis = param.Boolean(default=True, doc="""
        Whether to display the z-axis.""")

    xticks = param.Integer(default=5, doc="""
        Number of ticks along the x-axis.""")

    xticker = param.ClassSelector(default=None, class_=ticker.Locator, doc="""
        Allows supplying a matplotlib x-tick locator.""")

    xrotation = param.Integer(default=0, bounds=(0, 360), doc="""
        Rotation angle of the xticks.""")

    yticks = param.Integer(default=5, doc="""
        Number of ticks along the y-axis.""")

    yticker = param.ClassSelector(default=None, class_=ticker.Locator, doc="""
        Allows supplying a matplotlib y-tick locator.""")

    yrotation = param.Integer(default=0, bounds=(0, 360), doc="""
        Rotation angle of the xticks.""")

    zrotation = param.Integer(default=0, bounds=(0, 360), doc="""
        Rotation angle of the xticks.""")

    zticks = param.Integer(default=5, doc="""
        Number of ticks along the z-axis.""")

    zticker = param.ClassSelector(default=None, class_=ticker.Locator, doc="""
        Allows supplying a matplotlib z-tick locator.""")

    # Element Plots should declare the valid style options for matplotlib call
    style_opts = []

    _suppressed = [Table, ItemTable]

    def __init__(self, element, keys=None, ranges=None, dimensions=None, overlaid=0,
                 cyclic_index=0, style=None, zorder=0, adjoined=None, uniform=True, **params):
        self.dimensions = dimensions
        self.keys = keys
        if not isinstance(element, HoloMap):
            self.map = HoloMap(initial_items=(0, element),
                               kdims=['Frame'], id=element.id)
        else:
            self.map = element
        self.uniform = uniform
        self.adjoined = adjoined
        self.overlaid = overlaid
        self.cyclic_index = cyclic_index
        self.style = Store.lookup_options(self.map.last, 'style') if style is None else style
        self.zorder = zorder
        check = self.map.last
        if isinstance(check, CompositeOverlay):
            check = check.values()[0] # Should check if any are 3D plots
        if isinstance(check, Element3D):
            self.projection = '3d'

        dimensions = self.map.kdims if dimensions is None else dimensions
        keys = keys if keys else list(self.map.data.keys())
        plot_opts = Store.lookup_options(self.map.last, 'plot').options
        super(ElementPlot, self).__init__(keys=keys, dimensions=dimensions, adjoined=adjoined,
                                          uniform=uniform, **dict(params, **plot_opts))


    def _get_frame(self, key):
        if self.uniform:
            if not isinstance(key, tuple): key = (key,)
            kdims = [d.name for d in self.map.kdims]
            if self.dimensions is None:
                dimensions = kdims
            else:
                dimensions = [d.name for d in self.dimensions]
            if kdims == ['Frame'] and kdims != dimensions:
                select = dict(Frame=0)
            else:
                select = {d: key[dimensions.index(d)]
                          for d in kdims}
        elif isinstance(key, int):
            return self.map.values()[min([key, len(self.map)-1])]
        else:
            select = dict(zip(self.map.dimensions('key', label=True), key))
        try:
            selection = self.map.select((HoloMap,), **select)
        except KeyError:
            selection = None
        return selection.last if isinstance(selection, HoloMap) else selection


    def get_extents(self, view, ranges):
        """
        Gets the extents for the axes from the current View. The globally
        computed ranges can optionally override the extents.
        """
        num = 6 if self.projection == '3d' else 4
        if self.apply_ranges:
            if ranges:
                dims = view.dimensions()
                x0, x1 = ranges[dims[0].name]
                y0, y1 = ranges[dims[1].name]
                if self.projection == '3d':
                    z0, z1 = ranges[dims[2].name]
            else:
                x0, x1 = view.range(0)
                y0, y1 = view.range(1)
                if self.projection == '3d':
                    z0, z1 = view.range(2)
            if self.projection == '3d':
                range_extents = (x0, y0, z0, x1, y1, z1)
            else:
                range_extents = (x0, y0, x1, y1)
        else:
            range_extents = (np.NaN,) * num

        if self.apply_extents:
            norm_opts = Store.lookup_options(view, 'norm').options
            if norm_opts.get('framewise', False):
                extents = view.extents
            else:
                extent_list = self.map.traverse(lambda x: x.extents, [Element])
                extents = util.max_extents(extent_list, self.projection == '3d')
        else:
            extents = (np.NaN,) * num
        return tuple(l1 if l2 is None or not np.isfinite(l2) else l2 for l1, l2 in zip(range_extents, extents))


    def _format_title(self, key):
        frame = self._get_frame(key)
        if frame is None: return None
        type_name = type(frame).__name__
        group = frame.group if frame.group != type_name else ''
        label = frame.label
        if self.layout_dimensions:
            title = ''
        else:
            title_format = util.safe_unicode(self.title_format)
            title = title_format.format(label=util.safe_unicode(label),
                                        group=util.safe_unicode(group),
                                        type=type_name)
        dim_title = self._frame_title(key, 2)
        if not title or title.isspace():
            return dim_title
        elif not dim_title or dim_title.isspace():
            return title
        else:
            return '\n'.join([title, dim_title])


    def _draw_colorbar(self, artist):
        if 'cax' not in self.handles:
            axis = self.handles['axis']
            divider = make_axes_locatable(axis)
            self.handles['cax'] = divider.append_axes('right', size="5%", pad=0.05)
        self.handles['cbar'] = plt.colorbar(artist, cax=self.handles['cax'])
        if math.floor(self.style[self.cyclic_index].get('alpha', 1)) == 1:
            self.handles['cbar'].solids.set_edgecolor("face")


    def _finalize_axis(self, key, title=None, ranges=None, xticks=None, yticks=None,
                       zticks=None, xlabel=None, ylabel=None, zlabel=None):
        """
        Applies all the axis settings before the axis or figure is returned.
        Only plots with zorder 0 get to apply their settings.

        When the number of the frame is supplied as n, this method looks
        up and computes the appropriate title, axis labels and axis bounds.
        """

        axis = self.handles['axis']
        if self.bgcolor:
            axis.set_axis_bgcolor(self.bgcolor)

        view = self._get_frame(key)
        subplots = list(self.subplots.values()) if self.subplots else []
        if self.zorder == 0 and key is not None:
            title = None if self.zorder > 0 else self._format_title(key)
            suppress = any(sp.map.type in self._suppressed for sp in [self] + subplots
                           if isinstance(sp.map, HoloMap))
            if view is not None and not suppress:
                xlabel, ylabel, zlabel = self._axis_labels(view, subplots, xlabel, ylabel, zlabel)
                self._finalize_limits(axis, view, subplots, ranges)

                # Tick formatting
                xdim, ydim = view.get_dimension(0), view.get_dimension(1)
                xformat, yformat = None, None
                if xdim.formatter:
                    xformat = xdim.formatter
                elif xdim.type_formatters.get(xdim.type):
                    xformat = xdim.type_formatters[xdim.type]
                if xformat:
                    axis.xaxis.set_major_formatter(xformat)

                if ydim.formatter:
                    yformat = ydim.formatter
                elif ydim.type_formatters.get(ydim.type):
                    yformat = ydim.type_formatters[ydim.type]
                if yformat:
                    axis.yaxis.set_major_formatter(yformat)

            if self.zorder == 0 and not subplots:
                legend = axis.get_legend()
                if legend: legend.set_visible(self.show_legend)

                axis.get_xaxis().grid(self.show_grid)
                axis.get_yaxis().grid(self.show_grid)

            if xlabel and self.xaxis: axis.set_xlabel(xlabel, **self._fontsize('xlabel'))
            if ylabel and self.yaxis: axis.set_ylabel(ylabel, **self._fontsize('ylabel'))
            if zlabel and self.zaxis: axis.set_zlabel(zlabel, **self._fontsize('ylabel'))

            self._apply_aspect(axis)
            self._subplot_label(axis)
            self._finalize_axes(axis)
            if self.apply_ticks:
                self._finalize_ticks(axis, xticks, yticks, zticks)

            if self.show_title and title is not None:
                self.handles['title'] = axis.set_title(title,
                                                **self._fontsize('title'))

        for hook in self.finalize_hooks:
            try:
                hook(self, view)
            except Exception as e:
                self.warning("Plotting hook %r could not be applied:\n\n %s" % (hook, e))

        return super(ElementPlot, self)._finalize_axis(key)


    def _axis_labels(self, view, subplots, xlabel, ylabel, zlabel):
        # Axis labels
        dims = view.dimensions()
        if isinstance(view, CompositeOverlay):
            dims = dims[view.ndims:]
        if dims and xlabel is None:
            xlabel = str(dims[0])
        if len(dims) >= 2 and ylabel is None:
            ylabel = str(dims[1])
        if self.projection == '3d' and len(dims) >= 3 and zlabel is None:
            zlabel = str(dims[2])
        return xlabel, ylabel, zlabel


    def _apply_aspect(self, axis):
        if self.logx or self.logy:
            pass
        elif self.aspect == 'square':
            axis.set_aspect((1./axis.get_data_ratio()))
        elif self.aspect not in [None, 'square']:
            if isinstance(self.aspect, util.basestring):
                axis.set_aspect(self.aspect)
            else:
                axis.set_aspect(((1./axis.get_data_ratio()))/self.aspect)


    def _finalize_limits(self, axis, view, subplots, ranges):
        # Extents
        extents = self.get_extents(view, ranges)
        if extents and not self.overlaid:
            coords = [coord if np.isreal(coord) else np.NaN for coord in extents]
            if isinstance(view, Element3D) or self.projection == '3d':
                l, b, zmin, r, t, zmax = coords
                zmin, zmax = (c if np.isfinite(c) else None for c in (zmin, zmax))
                if not zmin == zmax:
                    axis.set_zlim((zmin, zmax))
            else:
                l, b, r, t = [coord if np.isreal(coord) else np.NaN for coord in extents]
            l, r = (c if np.isfinite(c) else None for c in (l, r))
            if not l == r:
                axis.set_xlim((l, r))
            b, t = (c if np.isfinite(c) else None for c in (b, t))
            if not b == t:
                axis.set_ylim((b, t))


    def _finalize_axes(self, axis):
        if self.logx:
            axis.set_xscale('log')
        elif self.logy:
            axis.set_yscale('log')

        if self.invert_xaxis:
            axis.invert_xaxis()
        if self.invert_yaxis:
            axis.invert_yaxis()


    def _finalize_ticks(self, axis, xticks, yticks, zticks):
        if not self.projection == '3d':
            disabled_spines = []
            if self.xaxis is not None:
                if self.xaxis == 'top':
                    axis.xaxis.set_ticks_position("top")
                    axis.xaxis.set_label_position("top")
                elif self.xaxis == 'bottom':
                    axis.xaxis.set_ticks_position("bottom")
            else:
                axis.xaxis.set_visible(False)
                disabled_spines.extend(['top', 'bottom'])

            if self.yaxis is not None:
                if self.yaxis == 'left':
                    axis.yaxis.set_ticks_position("left")
                elif self.yaxis == 'right':
                    axis.yaxis.set_ticks_position("right")
                    axis.yaxis.set_label_position("right")
            else:
                axis.yaxis.set_visible(False)
                disabled_spines.extend(['left', 'right'])

            for pos in disabled_spines:
                axis.spines[pos].set_visible(False)

        if not self.overlaid and not self.show_frame and self.projection != 'polar':

            axis.spines['right' if self.yaxis == 'left' else 'left'].set_visible(False)
            axis.spines['bottom' if self.xaxis == 'top' else 'top'].set_visible(False)

        if self.xticker:
            axis.xaxis.set_major_locator(self.xticker)
        elif xticks:
            axis.set_xticks(xticks[0])
            axis.set_xticklabels(xticks[1])
        elif self.logx:
            log_locator = ticker.LogLocator(numticks=self.xticks,
                                            subs=range(1,10))
            axis.xaxis.set_major_locator(log_locator)
        elif self.xticks:
            axis.xaxis.set_major_locator(ticker.MaxNLocator(self.xticks))

        for tick in axis.get_xticklabels():
            tick.set_rotation(self.xrotation)

        if self.yticker:
            axis.yaxis.set_major_locator(self.yticker)
        elif yticks:
            axis.set_yticks(yticks[0])
            axis.set_yticklabels(yticks[1])
        elif self.logy:
            log_locator = ticker.LogLocator(numticks=self.yticks,
                                            subs=range(1,10))
            axis.yaxis.set_major_locator(log_locator)
        elif self.yticks:
            axis.yaxis.set_major_locator(ticker.MaxNLocator(self.yticks))

        if not self.projection == '3d':
            pass
        elif self.zticker:
            axis.zaxis.set_major_locator(self.zticker)
        elif zticks:
            axis.set_zticks(zticks[0])
            axis.set_zticklabels(zticks[1])
        elif self.logz:
            log_locator = ticker.LogLocator(numticks=self.zticks,
                                            subs=range(1,10))
            axis.zaxis.set_major_locator(log_locator)
        else:
            axis.zaxis.set_major_locator(ticker.MaxNLocator(self.zticks))

        if self.projection == '3d':
            for tick in axis.get_zticklabels():
                tick.set_rotation(self.zrotation)

        if 'x' in self.hidden_labels:
            axis.set_xticklabels([])
            axis.xaxis.set_ticks_position('none')
            axis.set_xlabel('')
        if 'y' in self.hidden_labels:
            axis.set_yticklabels([])
            axis.yaxis.set_ticks_position('none')
            axis.set_ylabel('')
        if 'z' in self.hidden_labels:
            axis.set_zticklabels([])
            axis.zaxis.set_ticks_position('none')
            axis.set_zlabel('')

        tick_fontsize = self._fontsize('ticks','labelsize',common=False)
        if tick_fontsize:  axis.tick_params(**tick_fontsize)

    def update_frame(self, key, ranges=None):
        """
        Set the plot(s) to the given frame number.  Operates by
        manipulating the matplotlib objects held in the self._handles
        dictionary.

        If n is greater than the number of available frames, update
        using the last available frame.
        """
        view = self._get_frame(key)
        if view is not None:
            self.set_param(**Store.lookup_options(view, 'plot').options)
        axis = self.handles['axis']

        axes_visible = view is not None or self.overlaid
        axis.xaxis.set_visible(axes_visible and self.xaxis)
        axis.yaxis.set_visible(axes_visible and self.yaxis)
        axis.patch.set_alpha(np.min([int(axes_visible), 1]))

        for hname, handle in self.handles.items():
            hideable = hasattr(handle, 'set_visible')
            if hname not in ['axis', 'fig'] and hideable:
                handle.set_visible(view is not None)
        if view is None:
            return
        ranges = self.compute_ranges(self.map, key, ranges)
        if not self.adjoined:
            ranges = util.match_spec(view, ranges)
        axis_kwargs = self.update_handles(axis, view, key if view is not None else {}, ranges)
        self._finalize_axis(key, ranges=ranges, **(axis_kwargs if axis_kwargs else {}))


    def update_handles(self, axis, view, key, ranges=None):
        """
        Update the elements of the plot.
        :param axis:
        """
        raise NotImplementedError


[docs]class OverlayPlot(ElementPlot): """ OverlayPlot supports compositors processing of Overlays across maps. """ style_grouping = param.Integer(default=2, doc="""The length of the type.group.label spec that will be used to group Elements into style groups, i.e. a style_grouping value of 1 will group just by type, a value of 2 will group by type and group and a value of 3 will group by the full specification.""") show_legend = param.Boolean(default=True, doc=""" Whether to show legend for the plot.""") legend_position = param.ObjectSelector(objects=['inner', 'right', 'bottom', 'top', 'left'], default='inner', doc=""" Allows selecting between a number of predefined legend position options. The predefined options may be customized in the legend_specs class attribute.""") legend_specs = {'inner': {}, 'left': dict(bbox_to_anchor=(-.15, 1)), 'right': dict(bbox_to_anchor=(1.25, 1)), 'top': dict(bbox_to_anchor=(0., 1.02, 1., .102), ncol=3, mode="expand", borderaxespad=0.), 'bottom': dict(ncol=3, mode="expand", bbox_to_anchor=(0., -0.25, 1., .102), borderaxespad=0.1)} def __init__(self, overlay, ranges=None, **params): super(OverlayPlot, self).__init__(overlay, ranges=ranges, **params) # Apply data collapse self.map = Compositor.collapse(self.map, None, mode='data') self.map = self._apply_compositor(self.map, ranges, self.keys) self.subplots = self._create_subplots(ranges) def _apply_compositor(self, holomap, ranges=None, keys=None, dimensions=None): """ Given a HoloMap compute the appropriate (mapwise or framewise) ranges in order to apply the Compositor collapse operations in display mode (data collapse should already have happened). """ # Compute framewise normalization defaultdim = holomap.ndims == 1 and holomap.kdims[0].name != 'Frame' if keys and ranges and dimensions and not defaultdim: dim_inds = [dimensions.index(d) for d in holomap.kdims] sliced_keys = [tuple(k[i] for i in dim_inds) for k in keys] frame_ranges = OrderedDict([(slckey, self.compute_ranges(holomap, key, ranges[key])) for key, slckey in zip(keys, sliced_keys) if slckey in holomap.data.keys()]) else: mapwise_ranges = self.compute_ranges(holomap, None, None) frame_ranges = OrderedDict([(key, self.compute_ranges(holomap, key, mapwise_ranges)) for key in holomap.keys()]) ranges = frame_ranges.values() return Compositor.collapse(holomap, (ranges, frame_ranges.keys()), mode='display') def _create_subplots(self, ranges): subplots = OrderedDict() length = self.style_grouping ordering = util.layer_sort(self.map) keys, vmaps = self.map.split_overlays() group_fn = lambda x: (x.type.__name__, x.last.group, x.last.label) map_lengths = Counter() for m in vmaps: map_lengths[group_fn(m)[:length]] += 1 zoffset = 0 overlay_type = 1 if self.map.type == Overlay else 2 group_counter = Counter() for (key, vmap) in zip(keys, vmaps): if self.map.type == Overlay: style_key = (vmap.type.__name__,) + key else: if not isinstance(key, tuple): key = (key,) style_key = group_fn(vmap) + key group_key = style_key[:length] zorder = ordering.index(style_key) + zoffset cyclic_index = group_counter[group_key] group_counter[group_key] += 1 group_length = map_lengths[group_key] style = Store.lookup_options(vmap.last, 'style').max_cycles(group_length) plotopts = dict(keys=self.keys, axis=self.handles['axis'], style=style, cyclic_index=cyclic_index, figure=self.handles['fig'], zorder=self.zorder+zorder, ranges=ranges, overlaid=overlay_type, layout_dimensions=self.layout_dimensions, show_title=self.show_title, dimensions=self.dimensions, uniform=self.uniform, show_legend=self.show_legend) plotype = Store.registry[type(vmap.last)] if not isinstance(key, tuple): key = (key,) subplots[key] = plotype(vmap, **plotopts) if issubclass(plotype, OverlayPlot): zoffset += len(set([k for o in vmap for k in o.keys()])) - 1 return subplots def _adjust_legend(self, axis): """ Accumulate the legend handles and labels for all subplots and set up the legend """ title = '' legend_data = [] if issubclass(self.map.type, NdOverlay): dimensions = self.map.last.kdims for key in self.map.last.data.keys(): subplot = self.subplots[key] key = (dim.pprint_value(k) for k, dim in zip(key, dimensions)) label = ','.join([str(k) + dim.unit if dim.unit else str(k) for dim, k in zip(dimensions, key)]) handle = subplot.handles.get('legend_handle', False) if handle: legend_data.append((handle, label)) title = ', '.join([d.name for d in dimensions]) else: for key, subplot in self.subplots.items(): if isinstance(subplot, OverlayPlot): legend_data += subplot.handles.get('legend_data', {}).items() else: layer = self.map.last.data.get(key, False) handle = subplot.handles.get('legend_handle', False) if layer and layer.label and handle: legend_data.append((handle, layer.label)) autohandles, autolabels = axis.get_legend_handles_labels() legends = list(zip(*legend_data)) if legend_data else ([], []) all_handles = list(legends[0]) + list(autohandles) all_labels = list(legends[1]) + list(autolabels) data = OrderedDict() for handle, label in zip(all_handles, all_labels): if handle and (handle not in data) and label: data[handle] = label if not len(data) > 1 or not self.show_legend: legend = axis.get_legend() if legend: legend.set_visible(False) else: leg_spec = self.legend_specs[self.legend_position] leg = axis.legend(data.keys(), data.values(), title=title, scatterpoints=1, **leg_spec) frame = leg.get_frame() frame.set_facecolor('1.0') frame.set_edgecolor('0.0') frame.set_linewidth('1.0') self.handles['legend'] = leg self.handles['legend_data'] = data def __call__(self, ranges=None): axis = self.handles['axis'] key = self.keys[-1] ranges = self.compute_ranges(self.map, key, ranges) for plot in self.subplots.values(): plot(ranges=ranges) self._adjust_legend(axis) return self._finalize_axis(key, ranges=ranges, title=self._format_title(key)) def _axis_labels(self, view, subplots, xlabel, ylabel, zlabel): return xlabel, ylabel, zlabel def get_extents(self, overlay, ranges): extents = [] for key, subplot in self.subplots.items(): layer = overlay.data.get(key, False) if layer and subplot.apply_ranges and not isinstance(layer, Annotation): if isinstance(layer, CompositeOverlay): sp_ranges = ranges else: sp_ranges = util.match_spec(layer, ranges) if ranges else {} extents.append(subplot.get_extents(layer, sp_ranges)) return util.max_extents(extents, self.projection == '3d') def _format_title(self, key): frame = self._get_frame(key) if frame is None: return None type_name = type(frame).__name__ group = frame.group if frame.group != type_name else '' label = frame.label if self.layout_dimensions: title = '' else: title_format = util.safe_unicode(self.title_format) title = title_format.format(label=util.safe_unicode(label), group=util.safe_unicode(group), type=type_name) dim_title = self._frame_title(key, 2) if not title or title.isspace(): return dim_title elif not dim_title or dim_title.isspace(): return title else: return '\n'.join([title, dim_title]) def update_frame(self, key, ranges=None): if self.projection == '3d': self.handles['axis'].clear() ranges = self.compute_ranges(self.map, key, ranges) for plot in self.subplots.values(): plot.update_frame(key, ranges) self._finalize_axis(key, ranges=ranges)
[docs]class DrawPlot(ElementPlot): """ A DrawPlot is an ElementPlot that uses a draw method for rendering. The draw method is also called per update such that a full redraw is triggered per frame. Although not optimized for HoloMaps (due to the full redraw), DrawPlot is very easy to subclass to interface HoloViews with any third-party libraries offering matplotlib plotting functionality. """ _abstract = True
[docs] def draw(self, axis, element, ranges=None): """ The only method that needs to be overridden in subclasses. The current axis and element are supplied as arguments. The job of this function is to apply the appropriate matplotlib commands to render the element to the supplied axis. """ raise NotImplementedError
def __call__(self, ranges=None): element = self.map.last key = self.keys[-1] ranges = self.compute_ranges(self.map, key, ranges) ranges = util.match_spec(element, ranges) self.draw(self.handles['axis'], self.map.last, ranges) return self._finalize_axis(self.keys[-1], ranges=ranges) def update_handles(self, axis, element, key, ranges=None): if self.zorder == 0 and axis: axis.cla() self.draw(axis, element, ranges)
Store.registry.update({NdOverlay: OverlayPlot, Overlay: OverlayPlot})