Source code for holoviews.core.boundingregion

"""
Bounding regions and bounding boxes.

File originally part of the Topographica project.
"""
### JABALERT: The aarect information should probably be rewritten in
### matrix notation, not list notation, so that it can be scaled,
### translated, etc. easily.
###
from param.parameterized import get_occupied_slots

from .util import datetime_types


[docs]class BoundingRegion: """ Abstract bounding region class, for any portion of a 2D plane. Only subclasses can be instantiated directly. """ __abstract = True __slots__ = ['_aarect'] def contains(self, x, y): raise NotImplementedError def __contains__(self, point): (x, y) = point return self.contains(x, y) def scale(self, xs, ys): raise NotImplementedError def translate(self, xoff, yoff): l, b, r, t = self.aarect().lbrt() self._aarect = AARectangle((l + xoff, b + yoff), (r + xoff, t + yoff)) def rotate(self, theta): raise NotImplementedError def aarect(self): raise NotImplementedError
[docs] def centroid(self): """ Return the coordinates of the center of this BoundingBox """ return self.aarect().centroid()
def set(self, points): self._aarect = AARectangle(*points) # CEBALERT: same as methods on Parameter def __getstate__(self): # BoundingRegions have slots, not a dict, so we have to # support pickle and deepcopy ourselves. state = {} for slot in get_occupied_slots(self): state[slot] = getattr(self, slot) return state def __setstate__(self, state): for (k, v) in state.items(): setattr(self, k, v)
[docs]class BoundingBox(BoundingRegion): """ A rectangular bounding box defined either by two points forming an axis-aligned rectangle (or simply a radius for a square). """ __slots__ = [] def __str__(self): """ Return BoundingBox(points=((left,bottom),(right,top))) Reimplemented here so that 'print' for a BoundingBox will display the bounds. """ l, b, r, t = self._aarect.lbrt() if (not isinstance(r, datetime_types) and r == -l and not isinstance(b, datetime_types) and t == -b and r == t): return f'BoundingBox(radius={r})' else: return f'BoundingBox(points=(({l},{b}),({r},{t})))' def __repr__(self): return self.__str__() def script_repr(self, imports=None, prefix=" "): # Generate import statement if imports is None: imports = [] cls = self.__class__.__name__ mod = self.__module__ imports.append(f"from {mod} import {cls}") return self.__str__() def __init__(self, **args): """ Create a BoundingBox. Either 'radius' or 'points' can be specified for the AARectangle. If neither radius nor points is passed in, create a default AARectangle defined by (-0.5,-0.5),(0.5,0.5). """ # if present, 'radius', 'min_radius', and 'points' are deleted from # args before they're passed to the superclass (because they # aren't parameters to be set) if 'radius' in args: r = args['radius'] del args['radius'] self._aarect = AARectangle((-r, -r), (r, r)) elif 'points' in args: self._aarect = AARectangle(*args['points']) del args['points'] else: self._aarect = AARectangle((-0.5, -0.5), (0.5, 0.5)) super().__init__(**args) def __contains__(self, other): if isinstance(other, BoundingBox): return self.containsbb_inclusive(other) (x, y) = other return self.contains(x, y)
[docs] def contains(self, x, y): """ Returns true if the given point is contained within the bounding box, where all boundaries of the box are considered to be inclusive. """ left, bottom, right, top = self.aarect().lbrt() return (left <= x <= right) and (bottom <= y <= top)
[docs] def contains_exclusive(self, x, y): """ Return True if the given point is contained within the bounding box, where the bottom and right boundaries are considered exclusive. """ left, bottom, right, top = self._aarect.lbrt() return (left <= x < right) and (bottom < y <= top)
[docs] def containsbb_exclusive(self, x): """ Returns true if the given BoundingBox x is contained within the bounding box, where at least one of the boundaries of the box has to be exclusive. """ left, bottom, right, top = self.aarect().lbrt() leftx, bottomx, rightx, topx = x.aarect().lbrt() return (left <= leftx) and (bottom <= bottomx) and (right >= rightx) and (top >= topx) and\ (not ((left == leftx) and (bottom == bottomx) and (right == rightx) and (top == topx)))
[docs] def containsbb_inclusive(self, x): """ Returns true if the given BoundingBox x is contained within the bounding box, including cases of exact match. """ left, bottom, right, top = self.aarect().lbrt() leftx, bottomx, rightx, topx = x.aarect().lbrt() return (left <= leftx) and (bottom <= bottomx) and ( right >= rightx) and (top >= topx)
[docs] def upperexclusive_contains(self, x, y): """ Returns true if the given point is contained within the bounding box, where the right and upper boundaries are exclusive, and the left and lower boundaries are inclusive. Useful for tiling a plane into non-overlapping regions. """ left, bottom, right, top = self.aarect().lbrt() return (left <= x < right) and (bottom <= y < top)
def aarect(self): return self._aarect
[docs] def lbrt(self): """ return left,bottom,right,top values for the BoundingBox. """ return self._aarect.lbrt()
def __eq__(self, other): if isinstance(self, BoundingBox) and isinstance(other, BoundingBox): return self.lbrt() == other.lbrt() else: return False
[docs]class BoundingEllipse(BoundingBox): """ Similar to BoundingBox, but the region is the ellipse inscribed within the rectangle. """ __slots__ = []
[docs] def contains(self, x, y): left, bottom, right, top = self.aarect().lbrt() xr = (right - left) / 2.0 yr = (top - bottom) / 2.0 xc = left + xr yc = bottom + yr xd = x - xc yd = y - yc return (xd ** 2 / xr ** 2 + yd ** 2 / yr ** 2) <= 1
# JABALERT: Should probably remove top, bottom, etc. accessor functions, # and use the slot itself instead. ###################################################
[docs]class AARectangle: """ Axis-aligned rectangle class. Defines the smallest axis-aligned rectangle that encloses a set of points. Usage: aar = AARectangle( (x1,y1),(x2,y2), ... , (xN,yN) ) """ __slots__ = ['_left', '_bottom', '_right', '_top'] def __init__(self, *points): self._top = max([y for x, y in points]) self._bottom = min([y for x, y in points]) self._left = min([x for x, y in points]) self._right = max([x for x, y in points]) # support for pickling because this class has __slots__ rather # than __dict__ def __getstate__(self): state = {} for k in self.__slots__: state[k] = getattr(self, k) return state def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v)
[docs] def top(self): """Return the y-coordinate of the top of the rectangle.""" return self._top
[docs] def bottom(self): """Return the y-coordinate of the bottom of the rectangle.""" return self._bottom
[docs] def left(self): """Return the x-coordinate of the left side of the rectangle.""" return self._left
[docs] def right(self): """Return the x-coordinate of the right side of the rectangle.""" return self._right
[docs] def lbrt(self): """Return (left,bottom,right,top) as a tuple.""" return self._left, self._bottom, self._right, self._top
[docs] def centroid(self): """ Return the centroid of the rectangle. """ left, bottom, right, top = self.lbrt() return (right + left) / 2.0, (top + bottom) / 2.0
def intersect(self, other): l1, b1, r1, t1 = self.lbrt() l2, b2, r2, t2 = other.lbrt() l = max(l1, l2) b = max(b1, b2) r = min(r1, r2) t = min(t1, t2) return AARectangle(points=((l, b), (r, t))) def width(self): return self._right - self._left def height(self): return self._top - self._bottom def empty(self): l, b, r, t = self.lbrt() return (r <= l) or (t <= b)